Performance evaluation of filtered backprojection reconstruction and iterative reconstruction methods for PET images. 1998

C X Wang, and W E Snyder, and G Bilbro, and P Santago
Department of Radiology, Bowman Grey School of Medicine, Winston-Salem, NC 27157, USA.

The filtered backprojection (FBP) algorithm and statistical model based iterative algorithms such as the maximum likelihood (ML) reconstruction or the maximum a posteriori (MAP) reconstruction are the two major classes of tomographic reconstruction methods. The FBP method is widely used in clinical setting while iterative methods have attracted research interests in the past decade. In this paper we studied the performance of the FBP, the ML and the MAP methods using simulated projection data. The experiment showed that the MAP algorithm generated superior image quality in terms of the bias, the variance, and the average mean squared error (MSE) measures.

UI MeSH Term Description Entries
D007089 Image Enhancement Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level. Image Quality Enhancement,Enhancement, Image,Enhancement, Image Quality,Enhancements, Image,Enhancements, Image Quality,Image Enhancements,Image Quality Enhancements,Quality Enhancement, Image,Quality Enhancements, Image
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D014055 Tomography, Emission-Computed Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image. CAT Scan, Radionuclide,CT Scan, Radionuclide,Computerized Emission Tomography,Radionuclide Tomography, Computed,Scintigraphy, Computed Tomographic,Tomography, Radionuclide-Computed,Computed Tomographic Scintigraphy,Emission-Computed Tomography,Radionuclide Computer-Assisted Tomography,Radionuclide Computerized Tomography,Radionuclide-Computed Tomography,Radionuclide-Emission Computed Tomography,Tomography, Computerized Emission,CAT Scans, Radionuclide,CT Scans, Radionuclide,Computed Radionuclide Tomography,Computed Tomography, Radionuclide-Emission,Computer-Assisted Tomographies, Radionuclide,Computer-Assisted Tomography, Radionuclide,Computerized Tomography, Radionuclide,Emission Computed Tomography,Emission Tomography, Computerized,Radionuclide CAT Scan,Radionuclide CAT Scans,Radionuclide CT Scan,Radionuclide CT Scans,Radionuclide Computed Tomography,Radionuclide Computer Assisted Tomography,Radionuclide Computer-Assisted Tomographies,Radionuclide Emission Computed Tomography,Scan, Radionuclide CAT,Scan, Radionuclide CT,Scans, Radionuclide CAT,Scans, Radionuclide CT,Tomographic Scintigraphy, Computed,Tomographies, Radionuclide Computer-Assisted,Tomography, Computed Radionuclide,Tomography, Emission Computed,Tomography, Radionuclide Computed,Tomography, Radionuclide Computer-Assisted,Tomography, Radionuclide Computerized,Tomography, Radionuclide-Emission Computed
D015982 Bias Any deviation of results or inferences from the truth, or processes leading to such deviation. Bias can result from several sources: one-sided or systematic variations in measurement from the true value (systematic error); flaws in study design; deviation of inferences, interpretations, or analyses based on flawed data or data collection; etc. There is no sense of prejudice or subjectivity implied in the assessment of bias under these conditions. Aggregation Bias,Bias, Aggregation,Bias, Ecological,Bias, Statistical,Bias, Systematic,Ecological Bias,Outcome Measurement Errors,Statistical Bias,Systematic Bias,Bias, Epidemiologic,Biases,Biases, Ecological,Biases, Statistical,Ecological Biases,Ecological Fallacies,Ecological Fallacy,Epidemiologic Biases,Experimental Bias,Fallacies, Ecological,Fallacy, Ecological,Scientific Bias,Statistical Biases,Truncation Bias,Truncation Biases,Bias, Experimental,Bias, Scientific,Bias, Truncation,Biase, Epidemiologic,Biases, Epidemiologic,Biases, Truncation,Epidemiologic Biase,Error, Outcome Measurement,Errors, Outcome Measurement,Outcome Measurement Error
D016477 Artifacts Any visible result of a procedure which is caused by the procedure itself and not by the entity being analyzed. Common examples include histological structures introduced by tissue processing, radiographic images of structures that are not naturally present in living tissue, and products of chemical reactions that occur during analysis. Artefacts,Artefact,Artifact
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

C X Wang, and W E Snyder, and G Bilbro, and P Santago
February 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
C X Wang, and W E Snyder, and G Bilbro, and P Santago
August 2019, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology,
C X Wang, and W E Snyder, and G Bilbro, and P Santago
May 2013, Physics in medicine and biology,
C X Wang, and W E Snyder, and G Bilbro, and P Santago
June 2007, Physics in medicine and biology,
C X Wang, and W E Snyder, and G Bilbro, and P Santago
August 1994, Medical physics,
C X Wang, and W E Snyder, and G Bilbro, and P Santago
June 2011, European journal of nuclear medicine and molecular imaging,
C X Wang, and W E Snyder, and G Bilbro, and P Santago
July 1995, International journal of radiation oncology, biology, physics,
C X Wang, and W E Snyder, and G Bilbro, and P Santago
September 2008, Medical physics,
C X Wang, and W E Snyder, and G Bilbro, and P Santago
February 2010, Tsinghua science and technology,
Copied contents to your clipboard!