Clinical pharmacokinetics of mycophenolate mofetil. 1998

R E Bullingham, and A J Nicholls, and B R Kamm
CS Associates, Palo Alto, California, USA. Roy.Bullingham@Worldnet.att.net

The pharmacokinetics of the immunosuppressant mycophenolate mofetil have been investigated in healthy volunteers and mainly in recipients of renal allografts. Following oral administration, mycophenolate mofetil was rapidly and completely absorbed, and underwent extensive presystemic de-esterification. Systemic plasma clearance of intravenous mycophenolate mofetil was around 10 L/min in healthy individuals, and plasma mycophenolate mofetil concentrations fell below the quantitation limit (0.4 mg/L) within 10 minutes of the cessation of infusion. Similar plasma mycophenolate mofetil concentrations were seen after intravenous administration in patients with severe renal or hepatic impairment, implying that the de-esterification process had not been substantially affected. Mycophenolic acid, the active immunosuppressant species, is glucuronidated to a stable phenolic glucuronide (MPAG) which is not pharmacologically active. Over 90% of the administered dose is eventually excreted in the urine, mostly as MPAG. The magnitude of the MPAG renal clearance indicates that active tubular secretion of MPAG must occur. At clinically relevant concentrations, mycophenolic acid and MPAG are about 97% and 82% bound to albumin, respectively. MPAG at high (but clinically realisable) concentrations reduced the plasma binding of mycophenolic acid. The mean maximum plasma mycophenolic acid concentration (Cmax) after a mycophenolate mofetil 1 g dose in healthy individuals was around 25 mg/L, occurred at 0.8 hours postdose, decayed with a mean apparent half-life (t1/2) of around 16 hours, and generated a mean total area under the plasma concentration-time curve (AUC infinity) of around 64 mg.h/L. Intra- and interindividual coefficients of variation for the AUC infinity of the drug were estimated to be 25% and 10%, respectively. Intravenous and oral administration of mycophenolate mofetil showed statistically equivalent MPA AUC infinity values in healthy individuals. Compared with mycophenolic acid, MPAG showed a roughly similar Cmax about 1 hour after mycophenolic acid Cmax, with a similar t1/2 and an AUC infinity about 5-fold larger than that for mycophenolic acid. Secondary mycophenolic acid peaks represent a significant enterohepatic cycling process. Since MPAG was the sole material excreted in bile, entrohepatic cycling must involve colonic bacterial deconjugation of MPAG. An oral cholestyramine interaction study showed that the mean contribution of entrohepatic cycling to the AUC infinity of mycophenolic acid was around 40% with a range of 10 to 60%. The pharmacokinetics of patients with renal transplants (after 3 months or more) compared with those of healthy individuals were similar after oral mycophenolate mofetil. Immediately post-transplant, the mean Cmax and AUC infinity of mycophenolic acid were 30 to 50% of those in the 3-month post-transplant patients. These parameters rose slowly over the 3-month interval. Slow metabolic changes, rather than poor absorption, seem responsible for this nonstationarity, since intravenous and oral administration of mycophenolate mofetil in the immediate post-transplant period generated comparable MPA AUC infinity values. Renal impairment had no major effect on the pharmacokinetic of mycophenolic acid after single doses of mycophenolate mofetil, but there was a progressive decrease in MPAG clearance as glomerular filtration rate (GFR) declined. Compared to individuals with a normal GFR, patients with severe renal impairment (GFR 1.5 L/h/1.73m2) showed 3-to 6-fold higher MPAG AUC values. In rental transplant recipients during acute renal impairment in the early post-transplant period, the plasma MPA concentrations were comparable to those in patients without renal failure, whereas plasma MPAG concentrations were 2- to 3-fold higher. Haemodialysis had no major effect on plasma mycophenolic acid or MPAG. Dosage adjustments appear to not be necessary either in renal impairment or during dialysis. (ABSTRACT TRUN

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D009173 Mycophenolic Acid Compound derived from Penicillium stoloniferum and related species. It blocks de novo biosynthesis of purine nucleotides by inhibition of the enzyme inosine monophosphate dehydrogenase (IMP DEHYDROGENASE). Mycophenolic acid exerts selective effects on the immune system in which it prevents the proliferation of T-CELLS, LYMPHOCYTES, and the formation of antibodies from B-CELLS. It may also inhibit recruitment of LEUKOCYTES to sites of INFLAMMATION. Cellcept,Mycophenolate Mofetil,Mycophenolate Mofetil Hydrochloride,Mycophenolate Sodium,Mycophenolic Acid Morpholinoethyl Ester,Myfortic,RS 61443,RS-61443,Sodium Mycophenolate,Mofetil Hydrochloride, Mycophenolate,Mofetil, Mycophenolate,Mycophenolate, Sodium,RS61443
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004333 Drug Administration Routes The various ways of administering a drug or other chemical to a site in a patient or animal from where the chemical is absorbed into the blood and delivered to the target tissue. Administration Routes, Drug,Administration Route, Drug,Drug Administration Route,Route, Drug Administration,Routes, Drug Administration
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D001172 Arthritis, Rheumatoid A chronic systemic disease, primarily of the joints, marked by inflammatory changes in the synovial membranes and articular structures, widespread fibrinoid degeneration of the collagen fibers in mesenchymal tissues, and by atrophy and rarefaction of bony structures. Etiology is unknown, but autoimmune mechanisms have been implicated. Rheumatoid Arthritis
D016030 Kidney Transplantation The transference of a kidney from one human or animal to another. Grafting, Kidney,Renal Transplantation,Transplantation, Kidney,Transplantation, Renal,Kidney Grafting,Kidney Transplantations,Renal Transplantations,Transplantations, Kidney,Transplantations, Renal

Related Publications

R E Bullingham, and A J Nicholls, and B R Kamm
November 2007, Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society,
R E Bullingham, and A J Nicholls, and B R Kamm
June 2000, Clinical transplantation,
R E Bullingham, and A J Nicholls, and B R Kamm
January 1996, Surgical technology international,
R E Bullingham, and A J Nicholls, and B R Kamm
January 1998, Advances in experimental medicine and biology,
R E Bullingham, and A J Nicholls, and B R Kamm
April 2008, Therapeutic drug monitoring,
R E Bullingham, and A J Nicholls, and B R Kamm
July 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences,
R E Bullingham, and A J Nicholls, and B R Kamm
January 2011, Proceedings of the Western Pharmacology Society,
R E Bullingham, and A J Nicholls, and B R Kamm
March 1996, Journal of pharmaceutical sciences,
R E Bullingham, and A J Nicholls, and B R Kamm
February 2000, Pediatric nephrology (Berlin, Germany),
R E Bullingham, and A J Nicholls, and B R Kamm
May 2003, Pediatric nephrology (Berlin, Germany),
Copied contents to your clipboard!