Influence of electron contamination on in vivo surface dosimetry for high-energy photon beams. 1998

R Sjögren, and M Karlsson
Radiation Physics Department, Umeå University, Sweden.

The influence of the electron contamination at in vivo dosimetry with diodes on the patient surface has been investigated by introducing different accessories in the beam path and by changing the field size and SSD. The results show a clear correlation between the electron contamination at an effective measuring depth of the diode and the signal from the patient diode. When the electron contamination is taken into account the agreement between the diode values and the absorbed dose is greatly improved. More accurate in vivo dosimetry with less error margins is therefore possible if better predictions of the electron contamination in high-energy photon beams can be performed.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011882 Radiotherapy, High-Energy Radiotherapy using high-energy (megavolt or higher) ionizing radiation. Types of radiation include gamma rays, produced by a radioisotope within a teletherapy unit; x-rays, electrons, protons, alpha particles (helium ions) and heavy charged ions, produced by particle acceleration; and neutrons and pi-mesons (pions), produced as secondary particles following bombardment of a target with a primary particle. Megavolt Radiotherapy,High-Energy Radiotherapy,Radiotherapy, Megavolt,High Energy Radiotherapy,Radiotherapy, High Energy
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D012666 Semiconductors Materials that have a limited and usually variable electrical conductivity. They are particularly useful for the production of solid-state electronic devices. Semiconductor
D013679 Technology, Radiologic The application of scientific knowledge or technology to the field of radiology. The applications center mostly around x-ray or radioisotopes for diagnostic and therapeutic purposes but the technological applications of any radiation or radiologic procedure is within the scope of radiologic technology. Radiologic Technology,Technology, Radiological,Radiological Technology

Related Publications

R Sjögren, and M Karlsson
October 1997, Physics in medicine and biology,
R Sjögren, and M Karlsson
February 1985, Physics in medicine and biology,
R Sjögren, and M Karlsson
December 1985, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
R Sjögren, and M Karlsson
July 1996, Medical physics,
R Sjögren, and M Karlsson
March 2000, Physics in medicine and biology,
R Sjögren, and M Karlsson
December 1985, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
R Sjögren, and M Karlsson
September 1999, Physics in medicine and biology,
R Sjögren, and M Karlsson
January 1993, Medical physics,
R Sjögren, and M Karlsson
May 2009, Medical physics,
R Sjögren, and M Karlsson
January 2018, Physics and imaging in radiation oncology,
Copied contents to your clipboard!