In vivo labelling of the mouse brain 5-hydroxytryptamine1A receptor with the novel selective antagonist 3H-NAD-299. 1998

C Stenfors, and T Werner, and S B Ross
Biochemical Pharmacology, Preclinical R & D, Astra Arcus AB, Södertälje, Sweden.

The in vivo labelling of 5-hydroxytryptamine (5-HT)1A receptors in the mouse brain was studied with the novel selective 5-HT1A receptor antagonist, NAD-299 ((R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran- 5-carboxamide hydrogen (2R,3R)-tartrate monohydrate). 3H-NAD-299 was injected in a tail vein and the radioactivity in various brain regions was determined. More than 90% of the radioactivity in hippocampus, 15 min after the injection, was intact NAD-299. At this time the amount of 3H-NAD-299 was highest in hippocampus followed by frontal cortex, mesencephalon, hypothalamus, striatum and cerebellum. The specific accumulation of radioactivity (after subtracting cerebellum values) in frontal cortex and hippocampus was maximal 10 to 30 min after the injection and had almost disappeared after 2 h. Saturation kinetics derived Bmax (pmol/g wet weight tissue) values of 19.6+/-2.0 in frontal cortex and 38.0+/-3.5 in hippocampus. The apparent Kd values expressed in nmol/kg 3H-NAD-299 injected, were 12.3+/-2.2 in frontal cortex and 20.3+/-3.1 in hippocampus. The 5-HT1A receptor antagonist, WAY-100,635 competitively inhibited the specific accumulation of 3H-NAD-299 and was about equipotent with unlabelled NAD-299 with ED50 values of 20-30 nmol/kg s.c. These compounds were about 10 times more potent than the 5-HT1A receptor antagonists, p-MPPI and NDL-249 and 100 times more potent than (S)-UH-301. 5-HT1A receptor agonists, e.g. 8-OH-DPAT and flesinoxan and partial agonists, e.g. pindolol, buspirone and ipsapirone had low potency in this in vivo assay. Spiperone and methiothepin inhibited the 3H-NAD-299 accumulation at 10 micromol/kg s.c. The alpha1-adrenoceptor antagonist, prazosin at 2 micromol/kg s.c. increased significantly the specific accumulation of 3H-NAD-299. Pretreatment of the mice with the non-selective, irreversible receptor antagonist, EEDQ produced a dose related long-lasting decrease in the accumulation of 3H-NAD-299. It is concluded that NAD-299 is a very suitable ligand for studies of 5-HT1A receptors in the brain in vivo.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D011804 Quinolines
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000477 Alkylating Agents Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases. Alkylating Agent,Alkylator,Alkylators,Agent, Alkylating,Agents, Alkylating
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography

Related Publications

C Stenfors, and T Werner, and S B Ross
October 1997, The Journal of pharmacology and experimental therapeutics,
C Stenfors, and T Werner, and S B Ross
November 1998, European journal of pharmacology,
C Stenfors, and T Werner, and S B Ross
November 2001, The European journal of neuroscience,
C Stenfors, and T Werner, and S B Ross
December 1994, European journal of pharmacology,
C Stenfors, and T Werner, and S B Ross
December 2002, Naunyn-Schmiedeberg's archives of pharmacology,
C Stenfors, and T Werner, and S B Ross
March 1991, Pharmacology, biochemistry, and behavior,
C Stenfors, and T Werner, and S B Ross
December 1998, Neuropharmacology,
C Stenfors, and T Werner, and S B Ross
September 1985, Biological psychiatry,
Copied contents to your clipboard!