Gp91(phox) is the heme binding subunit of the superoxide-generating NADPH oxidase. 1998

L Yu, and M T Quinn, and A R Cross, and M C Dinauer
Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

The phagocyte NADPH oxidase flavocytochrome b558 is a membrane-bound heterodimer comprised of a glycosylated subunit, gp91(phox), and a nonglycosylated subunit, p22(phox). It contains two nonidentical heme groups that mediate the final steps of electron transfer to molecular oxygen (O2), resulting in the generation of superoxide ion (O2-). However, the location of the hemes within the flavocytochrome heterodimer remains controversial. In this study, we have used transgenic COS7 cell lines expressing gp91(phox), p22(phox), or both polypeptides to examine the relative role of each flavocytochrome b558 subunit in heme binding and O2- formation. A similar membrane localization was observed when gp91(phox) and p22(phox) were either expressed individually or coexpressed, as analyzed by confocal microscopy and immunoblotting of subcellular fractions. Spectral analysis of membranes prepared from COS7 cell lines expressing either gp91(phox) or both gp91(phox) and p22(phox) showed a b-type cytochrome with spectral characteristics identical to those of human neutrophil flavocytochrome b558. In contrast, no heme spectrum was detected in wild-type COS7 membranes or those containing only p22(phox). Furthermore, redox titration studies suggested that two heme groups were contained in gp91(phox) expressed in COS7 membranes, with midpoint potentials of -264 and -233 mV that were very similar to those obtained for neutrophil flavocytochrome b558. These results provide strong support for the hypothesis that gp91(phox) is the sole heme binding subunit of flavocytochrome b558. However, coexpression of gp91(phox) and p22(phox) in COS7 membranes was required to support O2- production in combination with neutrophil cytosol, indicating that the functional assembly of the active NADPH oxidase complex requires both subunits of flavocytochrome b558.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000074662 NADPH Oxidase 2 An NADPH oxidase that is expressed by PHAGOCYTES where it transfers electrons across the plasma membrane from cytosolic NADPH to molecular oxygen on the exterior. It regulates proton (H+) flux into resting phagocytes to control intracellular pH. Mutations in the CYBB gene are associated with X-LINKED CHRONIC GRANULOMATOUS DISEASE. CYBB Protein,Chronic Granulomatous Disease Protein,Cytochrome B-245 Beta Chain,GP91-PHOX Protein,NOX2 Protein,Cytochrome B 245 Beta Chain,GP91 PHOX Protein,Oxidase 2, NADPH
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D019255 NADPH Oxidases A family of membrane-associated flavoprotein NADPH-dependent oxidoreductases that catalyze the univalent reduction of OXYGEN to create SUPEROXIDES. Structurally, they are characterized by six N-terminal transmembrane ALPHA-HELICES, a FLAVIN-ADENINE DINUCLEOTIDE (FAD)-binding region, and a C-terminal NADPH-binding region. They are expressed primarily by EPITHELIAL CELLS in gut, kidney, colon, and smooth muscle tissues, as well as GRANULOCYTES and function to transfer electrons across membranes to molecular oxygen. Defects in the production of superoxide ions by some NADPH oxidases result in GRANULOMATOUS DISEASE, CHRONIC. NADPH Oxidase,NAD(P)H Oxidases,NAD(P)H oxidase,Nox Proteins,Oxidase, NADPH,Oxidases, NADPH
D019556 COS Cells CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CHLOROCEBUS AETHIOPS).) COS-1 Cells,COS-7 Cells,COS 1 Cells,COS 7 Cells,COS Cell,COS-1 Cell,COS-7 Cell,Cell, COS,Cell, COS-1,Cell, COS-7,Cells, COS,Cells, COS-1,Cells, COS-7

Related Publications

L Yu, and M T Quinn, and A R Cross, and M C Dinauer
July 1999, Proceedings of the National Academy of Sciences of the United States of America,
L Yu, and M T Quinn, and A R Cross, and M C Dinauer
August 2001, The Journal of biological chemistry,
L Yu, and M T Quinn, and A R Cross, and M C Dinauer
February 1995, Biochimica et biophysica acta,
L Yu, and M T Quinn, and A R Cross, and M C Dinauer
August 2000, Gene,
L Yu, and M T Quinn, and A R Cross, and M C Dinauer
April 1986, The Journal of biological chemistry,
L Yu, and M T Quinn, and A R Cross, and M C Dinauer
May 1996, American journal of veterinary research,
L Yu, and M T Quinn, and A R Cross, and M C Dinauer
March 2001, Biochemical and biophysical research communications,
L Yu, and M T Quinn, and A R Cross, and M C Dinauer
March 2011, Journal of immunology (Baltimore, Md. : 1950),
L Yu, and M T Quinn, and A R Cross, and M C Dinauer
April 1999, The Journal of biological chemistry,
L Yu, and M T Quinn, and A R Cross, and M C Dinauer
August 1994, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!