Further characterization of NADPH oxidase activity of human polymorphonuclear leukocytes. 1976

L C McPhail, and L R DeChatelet, and P S Shirley

Mn2+ was shown to catalyze a nonenzymatic oxidation of NADPH in the presence of superoxide anion by means of an isotopic assay for measurement of the oxidation of NADPH to NADP+. Human polymorphonuclear leukocyte granule NADPH oxidase activity was evaluated in the absence of Mn2+ and was found to be higher in granules from phagocytizing cells than in granules from resting cells. The drug phorbol myristate acetate, which affects the oxidative metabolism of the neutrophil like phagocytosis, was found to activate granule NADPH oxidase activity. Superoxide dismutase was shown to inhibit NADPH oxidase activity both in the presence and absence of added Mn2+. The NADPH oxidase reaction in the absence of Mn2+ was optimal at pH 5.5, and was more linear with increasing time and protein concentration than in the presence of Mn2+. No activity was measurable in granules isolated from resting cells until the level of NADPH added was above 0.25 mM. Activity was present in granules isolated from cells challenged with opsonized zymosan, even at 0.05 mM NADPH, and was higher than the activity found in granule fractions from resting cells at all levels of NADPH tested. The addition of as little as 0.1 muM NADH to the reaction mixture was found to inhibit granular NADPH oxidase activity, indicating a possible regulatory role for NADH. These results suggest that NADPH oxidase may be the enzyme that initiates the metabolic events accompanying phagocytosis.

UI MeSH Term Description Entries
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D010704 Phorbols The parent alcohol of the tumor promoting compounds from CROTON OIL (Croton tiglium). Tigliane,Tiglianes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D014969 Xanthine Oxidase An iron-molybdenum flavoprotein containing FLAVIN-ADENINE DINUCLEOTIDE that oxidizes hypoxanthine, some other purines and pterins, and aldehydes. Deficiency of the enzyme, an autosomal recessive trait, causes xanthinuria. Hypoxanthine Oxidase,Hypoxanthine Dehydrogenase,Hypoxanthine-Xanthine Oxidase,Purine-Xanthine Oxidase,Dehydrogenase, Hypoxanthine,Hypoxanthine Xanthine Oxidase,Oxidase, Hypoxanthine,Oxidase, Hypoxanthine-Xanthine,Oxidase, Purine-Xanthine,Oxidase, Xanthine,Purine Xanthine Oxidase

Related Publications

L C McPhail, and L R DeChatelet, and P S Shirley
January 1976, Advances in experimental medicine and biology,
L C McPhail, and L R DeChatelet, and P S Shirley
March 1978, Journal of the Reticuloendothelial Society,
L C McPhail, and L R DeChatelet, and P S Shirley
July 1987, Biochimica et biophysica acta,
L C McPhail, and L R DeChatelet, and P S Shirley
March 1982, Inflammation,
L C McPhail, and L R DeChatelet, and P S Shirley
May 1984, The Journal of biological chemistry,
L C McPhail, and L R DeChatelet, and P S Shirley
May 1994, The Journal of infectious diseases,
L C McPhail, and L R DeChatelet, and P S Shirley
January 1987, Veterinary research communications,
L C McPhail, and L R DeChatelet, and P S Shirley
May 1990, Archives of biochemistry and biophysics,
L C McPhail, and L R DeChatelet, and P S Shirley
August 1991, The Journal of clinical investigation,
Copied contents to your clipboard!