M2 muscarinic receptors inhibit forskolin- but not isoproterenol-mediated relaxation in bovine tracheal smooth muscle. 1998

R S Ostrom, and F J Ehlert
Department of Pharmacology, College of Medicine, University of California, Irvine, USA.

The ability of the M2 muscarinic receptor to inhibit the relaxant effects of forskolin and isoproterenol was investigated in bovine trachea. In most experiments, we measured contractile responses to oxotremorine-M in smooth muscle isolated from bovine trachea in which a majority of M3 receptors were inactivated by treatment with N-(2-chloroethyl)-4-piperidinyl diphenylacetate. In the presence of histamine (20 microM), the histamine H2 antagonist cimetidine (10 microM) and forskolin (4 microM), responses to oxotremorine-M were antagonized by [[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5, 11-dihydro-6H-pyrido[2,3b][1,4]benzodiazepine-6-one (1 microM) in a manner consistent with contractions mediated predominantly by M2 receptors. When similar experiments were conducted in the presence of isoproterenol (0.1 microM) instead of forskolin, contractions were antagonized in a manner consistent with an M3 receptor-mediated response. In similar experiments, we measured the relaxant potency of isoproterenol and forskolin against histamine-induced contractions in N-(2-chloroethyl)-4-piperidinyl diphenylacetate-treated trachea. By itself, oxotremorine-M (7.5 nM) had no contractile effect; however, it caused a substantial reduction in the relaxant potency of forskolin although having little effect on that of isoproterenol. These experiments establish that M2 receptors inhibit the relaxant effects of forskolin, but not isoproterenol. In untreated tissues, the relaxant responses to isoproterenol and forskolin were 10.8- and 14.2-fold more potent, respectively, against histamine than against oxotremorine-M-induced contractions of equal magnitude. Similarly, the maximal stimulation of cAMP accumulation elicited by isoproterenol and forskolin was inhibited 58 and 62%, respectively, in the presence of oxotremorine-M (80 nM) compared to that measured in the presence of histamine (20 microM). Analysis of the data indicated that isoproterenol elicited relaxation at concentrations well beyond those that stimulated maximal levels of cAMP accumulation. Our results indicate that part of the relaxant response to isoproterenol is mediated through a non-cAMP-dependent mechanism, and that this mechanism is largely unopposed by the M2 receptor.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010095 Oxotremorine A non-hydrolyzed muscarinic agonist used as a research tool. Oxytremorine
D010880 Piperidines A family of hexahydropyridines.
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004158 Diphenylacetic Acids Monocarboxylic acid derivatives of acetic acids, where the methyl hydrogens have been replaced by two phenyl groups. Acids, Diphenylacetic
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin

Related Publications

R S Ostrom, and F J Ehlert
July 1992, The Journal of pharmacology and experimental therapeutics,
R S Ostrom, and F J Ehlert
October 2002, Naunyn-Schmiedeberg's archives of pharmacology,
R S Ostrom, and F J Ehlert
August 1988, European journal of pharmacology,
R S Ostrom, and F J Ehlert
August 1997, The American journal of physiology,
R S Ostrom, and F J Ehlert
December 2002, International journal of urology : official journal of the Japanese Urological Association,
R S Ostrom, and F J Ehlert
January 1999, Proceedings of the Western Pharmacology Society,
R S Ostrom, and F J Ehlert
October 1992, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!