Nicotinic acetylcholine receptors in rat cochlear nucleus: [125I]-alpha-bungarotoxin receptor autoradiography and in situ hybridization of alpha 7 nAChR subunit mRNA. 1998

H K Happe, and B J Morley
Neurochemistry Laboratory, Boys Town National Research Hospital, Omaha, Nebraska 68131, USA.

The cochlear nucleus (CN) is the first site in the central nervous system (CNS) for processing auditory information. Acetylcholine in the CN is primarily extrinsic and is an important neurotransmitter in efferent pathways thought to provide CNS modulation of afferent signal processing. Although muscarinic acetylcholine receptors have been studied in the CN, the role of nicotinic receptors has not. We examined the distribution of one nicotinic acetylcholine receptor subtype, the alpha-bungarotoxin receptor (alpha Bgt), in the CN. Quantitative autoradiography was used to localize receptors and in situ hybridization was used to localize alpha 7 mRNA in CN neurons that express the alpha Bgt receptor. Binding sites for alpha Bgt are abundant in the anterior ventral, posterior ventral, and dorsal divisions of the CN, and receptor density is low in the granule cell layer and interstitial nucleus. Heterogeneity in CN subregions is described. Four distinct patterns of alpha Bgt binding were observed: (1) binding over and around neuronal cell bodies, (2) receptors locally surrounding neurons, (3) dense punctate binding in the dorsal CN (DCN) not associated with neuronal cell bodies, and (4) diffuse fields of alpha Bgt receptors prominent in the DCN molecular layer, a field underlying the granule cell layer and in the medial sheet. The perikaryial receptors are abundant in the ventral CN (VCN) and are always associated with neurons expressing mRNA for the receptor. Other neurons in the VCN also express alpha 7 mRNA, but without alpha Bgt receptor expression associated with the cell body. In general, alpha Bgt receptor distribution parallels cholinergic terminal distribution, except in granule cell regions rich in cholinergic markers but low in alpha Bgt receptors. The findings indicate that alpha Bgt receptors are widespread in the CN but are selectively localized on somata, proximal dendrites, or distal dendrites depending on the specific CN subregion. The data are consistent with the hypothesis that descending cholinergic fibers modulate afferent auditory signals by regulating intracellular Ca2+ through alpha Bgt receptors.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008297 Male Males
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

H K Happe, and B J Morley
September 1997, The Journal of biological chemistry,
H K Happe, and B J Morley
January 1974, Methods in enzymology,
H K Happe, and B J Morley
May 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H K Happe, and B J Morley
November 1984, The Journal of biological chemistry,
Copied contents to your clipboard!