Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. 1998

S Chu, and I Herskowitz
Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA.

Gametogenesis requires the successful coordination of two key processes, meiotic nuclear division and gamete morphogenesis. A central regulatory step in progression through gametogenesis occurs at the pachytene stage of meiotic prophase. We find that Ndt80 functions at pachytene of yeast gametogenesis (sporulation) to activate transcription of a set of genes required for both meiotic division (e.g., B-type cyclins) and gamete formation (e.g., SPS1). Ectopic synthesis of Ndt80 in vegetative cells induces transcription of these genes, and recombinant Ndt80 protein binds to a conserved sequence in their upstream region. Transcription of NDT80 itself is dependent on Ime1, which activates expression of early sporulation genes. Transcription of the Ndt80-regulated gene CLB1 is mediated by the checkpoint gene RAD17. Thus Ndt80 is a pivotal component of a transcriptional cascade programming yeast gametogenesis and may also be a target of meiotic checkpoint control.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013172 Spores, Fungal Reproductive bodies produced by fungi. Conidia,Fungal Spores,Conidium,Fungal Spore,Spore, Fungal
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

S Chu, and I Herskowitz
December 2002, Acta crystallographica. Section D, Biological crystallography,
S Chu, and I Herskowitz
October 2002, Proceedings of the National Academy of Sciences of the United States of America,
S Chu, and I Herskowitz
September 2006, The Journal of biological chemistry,
S Chu, and I Herskowitz
September 2014, Proceedings of the National Academy of Sciences of the United States of America,
S Chu, and I Herskowitz
June 2003, The Journal of cell biology,
Copied contents to your clipboard!