Age-related changes in [3H]MK-801 binding in the Fischer 344 rat brain. 1998

J J Mitchell, and K J Anderson
Department of Neuroscience, University of Florida, Gainesville 32610-0144, USA.

In this study we tested the hypothesis that the efficacy of L-glutamate to stimulate [3H]MK-801 binding to the NMDA receptor/channel complex is altered as a function of aging. L-Glutamate, or related excitatory amino acid (EAA), is the endogenous neurotransmitter of the NMDA receptor/channel complex. These studies examined the efficacy and potency with which L-glutamate produces receptor activation, channel opening and subsequent MK-801 binding as a function of increasing age by comparing dose-response curves (EC50 and Emax) from 6-, 12-, and 24-month-old F-344 rats. The number of NMDA receptors, as determined by [3H]MK-801 binding in the presence of a saturating concentration of L-glutamate, was reduced in the inner frontal cortex, entorhinal cortex and the lateral striatum in aged rats when compared with young adults. When a range of L-glutamate concentrations were used, differences in Emax were noted in the same brain regions in addition to several others in aged and middle-aged animals when compared with young-adult animals. No changes in EC50 values were noted in any of the brain regions at either age when compared with young-adults.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

J J Mitchell, and K J Anderson
May 1989, Brain research,
J J Mitchell, and K J Anderson
January 1998, Molecular and chemical neuropathology,
J J Mitchell, and K J Anderson
October 1987, European journal of pharmacology,
J J Mitchell, and K J Anderson
April 1990, Journal of neurochemistry,
J J Mitchell, and K J Anderson
June 2005, Aging cell,
J J Mitchell, and K J Anderson
March 1999, The Journal of pharmacology and experimental therapeutics,
J J Mitchell, and K J Anderson
November 1988, Neuroscience letters,
Copied contents to your clipboard!