Methods for producing recombinant human cellular retinaldehyde-binding protein. 1998

J W Crabb, and Y Chen, and S Goldflam, and K West, and J Kapron
W. Alton Jones, Cell Science Center, Lake Placid, NY, USA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012172 Retinaldehyde A diterpene derived from the carotenoid VITAMIN A which functions as the active component of the visual cycle. It is the prosthetic group of RHODOPSIN (i.e., covalently bonded to ROD OPSIN as 11-cis-retinal). When stimulated by visible light, rhodopsin transforms this cis-isomer of retinal to the trans-isomer (11-trans-retinal). This transformation straightens-out the bend of the retinal molecule and causes a change in the shape of rhodopsin triggering the visual process. A series of energy-requiring enzyme-catalyzed reactions convert the 11-trans-retinal back to the cis-isomer. 11-trans-Retinal,3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-Nonatetraenal,Axerophthal,Retinal,Retinene,Retinyl Aldehydde,Vitamin A Aldehyde,all-trans-Retinal,11-cis-Retinal,11 cis Retinal,11 trans Retinal,Aldehydde, Retinyl,Aldehyde, Vitamin A,all trans Retinal

Related Publications

J W Crabb, and Y Chen, and S Goldflam, and K West, and J Kapron
January 1990, Methods in enzymology,
J W Crabb, and Y Chen, and S Goldflam, and K West, and J Kapron
December 1996, Experimental eye research,
J W Crabb, and Y Chen, and S Goldflam, and K West, and J Kapron
September 2005, Experimental eye research,
J W Crabb, and Y Chen, and S Goldflam, and K West, and J Kapron
May 1997, Experimental eye research,
J W Crabb, and Y Chen, and S Goldflam, and K West, and J Kapron
November 2005, Proteins,
J W Crabb, and Y Chen, and S Goldflam, and K West, and J Kapron
April 2003, The Journal of biological chemistry,
J W Crabb, and Y Chen, and S Goldflam, and K West, and J Kapron
January 2014, Journal of the American Chemical Society,
J W Crabb, and Y Chen, and S Goldflam, and K West, and J Kapron
October 1994, The Journal of biological chemistry,
J W Crabb, and Y Chen, and S Goldflam, and K West, and J Kapron
September 1998, Molecular vision,
Copied contents to your clipboard!