Autocrine regulation of matrix metalloproteinase-9 gene expression and secretion by tumor necrosis factor-alpha (TNF-alpha) in NB4 leukemic cells: specific involvement of TNF receptor type 1. 1998

M G Ismair, and C Ries, and F Lottspeich, and C Zang, and H J Kolb, and P E Petrides
Molecular Oncology Laboratory, Department of Medicine III, University of Munich Medical School Grosshadern, Germany.

Matrix metalloproteinases have been reported to be involved in tumor cell invasion and metastasis. Dissemination of malignant cells in acute myeloid leukemia (AML) may be mediated by similar mechanisms. Here, we report, that the t(15/17)+ acute promyelocytic leukemia (APL) cell line NB4 constitutively expresses and releases the proenzyme form of matrix metalloproteinase-9 (MMP-9, 92 kDa type IV collagenase/gelatinase, gelatinase B), as well as tissue inhibitor of metalloproteinases-1 (TIMP-1). Both proteins were identified by N-terminal amino acid sequence analysis after purification using gelatin Sepharose affinity chromatography. Whereas 12-O-tetradecanoylphorbol-13 acetate (TPA) increased both MMP-9 and TIMP-1 mRNA levels, tumor necrosis factor-alpha (TNF-alpha) stimulated only MMP-9 gene expression in a dose- and time-dependent manner. Neutralizing monoclonal antibodies (MoABs) to TNF-alpha (anti-TNF-alpha) decreased the constitutive and TPA-dependent expression of MMP-9 but did not influence TIMP-1 expression, either in unstimulated or in TPA-treated NB4 cells. FACS analyses showed that NB4 cells express both TNF receptor 1 (TNF-R1) and TNF-R2 to a similar extent. Blocking MoABs against TNF-R 1 (anti-TNF-R1) decreased the constitutive expression of MMP-9, whereas anti-TNF-R2 had almost no effect. Our results show, that in NB4 cells the expression of MMP-9 but not of TIMP-1 is maintained by autocrine stimulation with TNF-alpha. Thus, leukemic cells may be enabled to leave the bone marrow and infiltrate peripheral tissues by a dysfunction in the regulation of the MMP-9:TIMP-1 equilibrium, possibly triggered through autostimulation by TNF-alpha.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015473 Leukemia, Promyelocytic, Acute An acute myeloid leukemia in which abnormal PROMYELOCYTES predominate. It is frequently associated with DISSEMINATED INTRAVASCULAR COAGULATION. Leukemia, Myeloid, Acute, M3,Leukemia, Progranulocytic,Myeloid Leukemia, Acute, M3,Progranulocytic Leukemia,Promyelocytic Leukemia, Acute,AML M3,Acute Promyelocytic Leukemia,Leukemia, Acute Promyelocytic,M3 ANLL,ANLL, M3,Acute Promyelocytic Leukemias

Related Publications

M G Ismair, and C Ries, and F Lottspeich, and C Zang, and H J Kolb, and P E Petrides
July 2004, Lin chuang er bi yan hou ke za zhi = Journal of clinical otorhinolaryngology,
M G Ismair, and C Ries, and F Lottspeich, and C Zang, and H J Kolb, and P E Petrides
January 2006, Biological chemistry,
M G Ismair, and C Ries, and F Lottspeich, and C Zang, and H J Kolb, and P E Petrides
March 2009, BMC immunology,
M G Ismair, and C Ries, and F Lottspeich, and C Zang, and H J Kolb, and P E Petrides
March 1998, Biochemical and biophysical research communications,
M G Ismair, and C Ries, and F Lottspeich, and C Zang, and H J Kolb, and P E Petrides
March 2004, Clinical cancer research : an official journal of the American Association for Cancer Research,
M G Ismair, and C Ries, and F Lottspeich, and C Zang, and H J Kolb, and P E Petrides
August 2006, FEBS letters,
M G Ismair, and C Ries, and F Lottspeich, and C Zang, and H J Kolb, and P E Petrides
November 2007, World journal of gastroenterology,
M G Ismair, and C Ries, and F Lottspeich, and C Zang, and H J Kolb, and P E Petrides
January 2006, Ophthalmic research,
M G Ismair, and C Ries, and F Lottspeich, and C Zang, and H J Kolb, and P E Petrides
April 2010, Molecular cancer research : MCR,
M G Ismair, and C Ries, and F Lottspeich, and C Zang, and H J Kolb, and P E Petrides
September 2010, Biology of reproduction,
Copied contents to your clipboard!