Redox control of vascular smooth muscle proliferation. 1998

K K Griendling, and M Ushio-Fukai
Emory University School of Medicine, Division of Cardiology, Atlanta, Georgia 30322, USA.

Recent evidence suggests a role for reactive oxygen species in the control of vascular smooth muscle proliferation both in vitro and in vivo. Oxidative stress increases cell proliferation, mediates hormone-induced hypertrophy, and-under some circumstances-induces apoptosis. Smooth muscle cells contain a reduced nicotinamide adenine dinucleotide/reduced nicotinamide adenine dinucleotide phosphate oxidase that is responsible for the majority of the superoxide produced by the vessel wall. This enzyme has been characterized biochemically, but only limited information is available regarding its molecular structure. High levels of oxidative stress are apparently involved in the pathogenesis of vascular diseases such as hypertension and atherosclerosis, along with abnormal vascular growth after balloon injury. Thus the pathways responsible for oxidative stress, as well as the antioxidant defenses in the vessel wall, may provide novel therapeutic targets.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

K K Griendling, and M Ushio-Fukai
March 2010, Antioxidants & redox signaling,
K K Griendling, and M Ushio-Fukai
March 2010, Antioxidants & redox signaling,
K K Griendling, and M Ushio-Fukai
October 2018, Laboratory investigation; a journal of technical methods and pathology,
K K Griendling, and M Ushio-Fukai
October 2004, Current opinion in lipidology,
K K Griendling, and M Ushio-Fukai
April 2006, Arteriosclerosis, thrombosis, and vascular biology,
K K Griendling, and M Ushio-Fukai
January 2014, Frontiers in cell and developmental biology,
K K Griendling, and M Ushio-Fukai
July 2001, Circulation research,
K K Griendling, and M Ushio-Fukai
January 1991, Annals of the Academy of Medicine, Singapore,
K K Griendling, and M Ushio-Fukai
May 2010, Biochemical and biophysical research communications,
K K Griendling, and M Ushio-Fukai
June 2010, Arteriosclerosis, thrombosis, and vascular biology,
Copied contents to your clipboard!