Purification and properties of the heme- and iron-sulfur-containing heterodisulfide reductase from Methanosarcina thermophila. 1998

M Simianu, and E Murakami, and J M Brewer, and S W Ragsdale
Department of Biochemistry, The Beadle Center, University of Nebraska, Lincoln 68588-0664, USA.

The heterodisulfide reductase (HDR) from Methanosarcina thermophila was purified to homogeneity from acetate-grown cells. In the absence of detergents, HDR consisted of an eight-protein complex with hydrogenase activity. However, when HDR was purified in the presence of 0.6% Triton X-100, a two-subunit (53 and 27 kDa) high specific activity ( approximately 200 units mg-1) enzyme was obtained that lacked hydrogenase activity. Sedimentation equilibrium experiments demonstrated that HDR has a molecular mass of 206 kDa and a high partial specific volume (0.9 cm3/g), indicating that the purified protein contains a significant amount of bound lipid. Like the HDR from Methanosarcina barkeri [Kunkel, A., Vaupel, M., Heim, S., Thauer, R. K., and Hedderich, R. (1997) Eur. J. Biochem. 244, 226-234], it was found to contain two discrete b-type hemes in the small subunit and two distinct [Fe4S4]2+/1+ clusters in the large subunit. One heme is high-spin and has a high midpoint potential (-23 mV), whereas the other heme apparently is low-spin and exhibits a relatively low midpoint potential (-180 mV). Only the high-spin heme binds CO. The midpoint potentials for the two clusters are -100 and -400 mV. In the fully reduced state, a complicated EPR spectrum with g values of 2.03, 1.97, 1.92, and 1.88 was observed. This spectrum resembles that of 8Fe ferredoxins in the fully reduced state, indicating that the two clusters in HDR are near enough to experience relatively strong dipolar interactions. Kinetic studies in which CO oxidation is coupled to heterodisulfide reduction strongly indicate that a membrane-associated compound is the direct electron donor to HDR. An electron-transfer pathway is presented that postulates a mechanism for coupling electron transport to proton translocation.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011199 Potentiometry Solution titration in which the end point is read from the electrode-potential variations with the concentrations of potential determining ions. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003067 Coenzymes Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes. Coenzyme,Enzyme Cofactor,Cofactors, Enzyme,Enzyme Cofactors,Cofactor, Enzyme
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX

Related Publications

M Simianu, and E Murakami, and J M Brewer, and S W Ragsdale
October 1998, The Journal of biological chemistry,
M Simianu, and E Murakami, and J M Brewer, and S W Ragsdale
April 1994, European journal of biochemistry,
M Simianu, and E Murakami, and J M Brewer, and S W Ragsdale
September 1996, The Journal of biological chemistry,
M Simianu, and E Murakami, and J M Brewer, and S W Ragsdale
January 2001, The Journal of biological chemistry,
M Simianu, and E Murakami, and J M Brewer, and S W Ragsdale
June 2005, Journal of bacteriology,
M Simianu, and E Murakami, and J M Brewer, and S W Ragsdale
November 1994, Journal of bacteriology,
M Simianu, and E Murakami, and J M Brewer, and S W Ragsdale
May 1994, Journal of bacteriology,
M Simianu, and E Murakami, and J M Brewer, and S W Ragsdale
February 1977, The Journal of biological chemistry,
M Simianu, and E Murakami, and J M Brewer, and S W Ragsdale
October 1990, European journal of biochemistry,
M Simianu, and E Murakami, and J M Brewer, and S W Ragsdale
April 1993, European journal of biochemistry,
Copied contents to your clipboard!