A novel type II complement C2 deficiency allele in an African-American family. 1998

Z B Zhu, and T P Atkinson, and J E Volanakis
Department of Medicine, University of Alabama, Birmingham 35294, USA.

A 9-yr-old African-American male presenting with severe recurrent pyogenic infections was found to have C2 deficiency (C2D). Analysis of his genomic DNA demonstrated that he carried one type I C2D allele associated with the HLA-A25, B18, DR15 haplotype. Screening all 18 exons of the C2 gene by exon-specific PCR/single-strand conformation polymorphism indicated abnormal bands in exons 3, 7, and 6, the latter apparently caused by the 28-bp deletion of the typical type I C2D allele. Nucleotide (nt) sequencing of the PCR-amplified exons 3 and 7 revealed a heterozygous G to A transition at nt 392, causing a C111Y mutation, and a heterozygous G to C transversion at nt 954, causing a E298D mutation and a polymorphic MaeII site. Cys111 is the invariable third half-cystine of the second complement control protein module of C2. Pulse-chase biosynthetic labeling experiments indicated that the C111Y mutant C2 was retained by transfected COS cells and secreted only in minimal amounts. Therefore, this mutation causes a type II C2D. In contrast, the E298D mutation affected neither the secretion of C2 from transfected cells nor its specific hemolytic activity. Analysis of genomic DNA from members of the patient's family indicated that 1) the proband as well as one of his sisters inherited the type I C2D allele from their father and the novel type II C2D allele from their mother; 2) the polymorphic MaeII site caused by the G954C transversion is associated with the type I C2D allele; and 3) the novel C111Y mutation is associated in this family with the haplotype HLA-A28, B58, DR12.

UI MeSH Term Description Entries
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010375 Pedigree The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition. Family Tree,Genealogical Tree,Genealogic Tree,Genetic Identity,Identity, Genetic,Family Trees,Genealogic Trees,Genealogical Trees,Genetic Identities,Identities, Genetic,Tree, Family,Tree, Genealogic,Tree, Genealogical,Trees, Family,Trees, Genealogic,Trees, Genealogical
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D003175 Complement C2 A component of the CLASSICAL COMPLEMENT PATHWAY. C2 is cleaved by activated COMPLEMENT C1S into COMPLEMENT C2B and COMPLEMENT C2A. C2a, the COOH-terminal fragment containing a SERINE PROTEASE, combines with COMPLEMENT C4B to form C4b2a (CLASSICAL PATHWAY C3 CONVERTASE) and subsequent C4b2a3b (CLASSICAL PATHWAY C5 CONVERTASE). C2 Complement,Complement 2,Complement Component 2,C2, Complement,Complement, C2,Component 2, Complement
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Z B Zhu, and T P Atkinson, and J E Volanakis
March 1994, Human immunology,
Z B Zhu, and T P Atkinson, and J E Volanakis
January 1978, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
Z B Zhu, and T P Atkinson, and J E Volanakis
August 2013, Tissue antigens,
Z B Zhu, and T P Atkinson, and J E Volanakis
February 1998, Immunology,
Z B Zhu, and T P Atkinson, and J E Volanakis
May 1997, Tissue antigens,
Z B Zhu, and T P Atkinson, and J E Volanakis
December 1996, Tissue antigens,
Z B Zhu, and T P Atkinson, and J E Volanakis
May 1997, Tissue antigens,
Z B Zhu, and T P Atkinson, and J E Volanakis
July 2023, American journal of medical genetics. Part A,
Z B Zhu, and T P Atkinson, and J E Volanakis
July 1979, The British journal of dermatology,
Copied contents to your clipboard!