Nucleotide excision repair proteins may be involved in the fixation of glyoxal-induced mutagenesis in Escherichia coli. 1998

N Murata-Kamiya, and H Kamiya, and H Kaji, and H Kasai
Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.

To investigate the influence of nucleotide excision repair (NER) on glyoxal-induced mutations, we treated wild-type and NER-deficient (uvrC) Escherichia coli strains with glyoxal, and analyzed mutations in the chromosomal lacI gene. In both strains, the cell death and the mutation frequency increased according to the dose of glyoxal added to the culture medium, and cell death was induced to a similar level in both strains. Interestingly, the frequency of glyoxal-induced mutations in the wild-type strain was higher than that in the uvrC strain. Particularly, the frequency of base-pair substitutions was 4.7-fold higher in the wild-type strain. In the wild-type strain, G:C-->T:A transversions were predominant, followed by G:C-->A:T and A:T-->T:A mutations. In the uvrC strain, G:C-->A:T transitions were predominant, followed by G:C-->T:A transversions. All the base-pair substitutions except for G:C-->A:T transitions were >4-fold higher in the wild-type strain than in the uvrC strain. These results suggest that NER may be involved in the fixation of glyoxal-induced base-pair substitutions.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006037 Glyoxal A 2-carbon aldehyde with carbonyl groups on both carbons. Ethanedial,Ethanedione
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses

Related Publications

N Murata-Kamiya, and H Kamiya, and H Kaji, and H Kasai
May 2008, Genes to cells : devoted to molecular & cellular mechanisms,
N Murata-Kamiya, and H Kamiya, and H Kaji, and H Kasai
March 1990, Microbiological reviews,
N Murata-Kamiya, and H Kamiya, and H Kaji, and H Kasai
February 2002, Proceedings of the National Academy of Sciences of the United States of America,
N Murata-Kamiya, and H Kamiya, and H Kaji, and H Kasai
February 1994, The Journal of biological chemistry,
N Murata-Kamiya, and H Kamiya, and H Kaji, and H Kasai
October 2000, Journal of bacteriology,
N Murata-Kamiya, and H Kamiya, and H Kaji, and H Kasai
June 1997, Mutation research,
N Murata-Kamiya, and H Kamiya, and H Kaji, and H Kasai
January 1989, Annali dell'Istituto superiore di sanita,
N Murata-Kamiya, and H Kamiya, and H Kaji, and H Kasai
May 1990, The Journal of biological chemistry,
N Murata-Kamiya, and H Kamiya, and H Kaji, and H Kasai
January 2013, DNA repair,
N Murata-Kamiya, and H Kamiya, and H Kaji, and H Kasai
August 1992, Molecular microbiology,
Copied contents to your clipboard!