The transition to endoreduplication in trophoblast giant cells is regulated by the mSNA zinc finger transcription factor. 1998

H Nakayama, and I C Scott, and J C Cross
Program in Development and Fetal Health, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

Terminal cell differentiation is usually associated with cell cycle exit. In some lineages, however, cells undergo continued rounds of DNA synthesis without intervening mitoses (endoreduplication) resulting in polyploid nuclei. This is striking in rodent trophoblast giant cells which contain up to 1000N of DNA. In Drosophila, the Escargot gene has been implicated in regulating the transition from mitotic cell cycles to endocycles during development. We found that a murine homologue, mSna, was expressed in mouse trophoblast and was downregulated during giant cell differentiation. The mSNA zinc finger protein bound to E-box DNA elements and, in transfected C3H10T1/2 fibroblasts, acted as a transcriptional repressor. The maximal repressive effect was dependent on both the zinc finger DNA-binding domain and the N-terminal, seven-amino-acid SNAG domain. Misexpression experiments in Rcho-1 trophoblast cells revealed that mSna regulates the transition from replicating precursor cells to committed giant cells: overexpression blocked, whereas antisense RNA-mediated underexpression promoted trophoblast giant cell differentiation. Overexpression of mSna in precursor cells had no effect on cell cycle kinetics, but did increase cyclin A and B levels, implying actions during G2. These effects were dependent on both the zinc finger and SNAG domains. Together, these data suggest that mSNA has an ESCARGOT-like function to repress the transcription of genes that promote the transition from mitotic to endoreduplicative cell cycles in rodent trophoblast.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000071250 Snail Family Transcription Factors A transcription factor family characterized by the presence of several C-terminal CYS2-HIS2 ZINC FINGERS. They function in many developmental processes including the induction of the EPITHELIAL-MESENCHYMAL TRANSITION; maintenance of embryonic MESODERM; growth arrest, CELL SURVIVAL; and CELL MIGRATION. Slug Transcription Factors,Snail Transcription Factors,Transcription Factors, Slug,Transcription Factors, Snail
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Nakayama, and I C Scott, and J C Cross
December 2004, Biochemical and biophysical research communications,
H Nakayama, and I C Scott, and J C Cross
February 2021, Clinical and experimental pharmacology & physiology,
H Nakayama, and I C Scott, and J C Cross
October 2000, The Journal of biological chemistry,
H Nakayama, and I C Scott, and J C Cross
November 2007, The Biochemical journal,
H Nakayama, and I C Scott, and J C Cross
February 1982, The Journal of biological chemistry,
H Nakayama, and I C Scott, and J C Cross
September 2015, Oncotarget,
H Nakayama, and I C Scott, and J C Cross
June 2023, Biochemical and biophysical research communications,
H Nakayama, and I C Scott, and J C Cross
August 2005, FEBS letters,
Copied contents to your clipboard!