A novel Xenopus homologue of bone morphogenetic protein-7 (BMP-7). 1997

S Wang, and M Krinks, and L Kleinwaks, and M Moos
Laboratory of Developmental Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852-1448, USA.

We identified a Xenopus gene closely related to mammalian bone morphogenetic protein (BMP)-7 (also termed osteogenic protein-1 or OP-1). It resembles the mammalian gene in primary structure and expression pattern much more closely than does a previously described Xenopus homologue, originally termed XBMP-7 [Nishimatsu, Suzuki, Shoda, Murakami and Ueno (1992) Biochem. Biophys. Res. Commun. 186, 1487-1495]. The novel gene has therefore been designated XBMP-7 and the gene described earlier has been renamed XBMP-7R (M. Moos and N. Ueno, unpublished work). It has a broad distribution, primarily in the anterior and posterior ventral regions during gastrulation, subsequently becoming prominent at different stages in a wide variety of structures (eyes, neural structures, heart, pronephros, posterior ventral region and other structures), paralleling the distribution of XBMP-4 closely. However, its expression begins later than that of XBMP-4 during gastrulation. Lithium treatment of embryos concentrates the XBMP-7 expression in the expanded eye and heart structures. Ventral overexpression of XBMP-7 produces large protrusions that ultimately develop colouration characteristic of haemoglobin, which is confirmed by markedly expanded expression of alpha-globin. Dorsal overexpression suppresses dorsal anterior structures. Molecular analysis of animal caps overexpressing XBMP-7 reveals induction of markers associated with ventral and haematopoietic tissue, which is consistent with whole-embryo overexpression results. Globin induction by XBMP-7 can be blocked by a truncated BMP receptor previously shown to interrupt BMP-4 signalling, indicating XBMP-7 also interacts with this receptor. Our data support the concept that XBMP-7 may play a variety of roles during embryogenesis, and suggest a possible role in haematogenesis.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Wang, and M Krinks, and L Kleinwaks, and M Moos
January 2015, PloS one,
S Wang, and M Krinks, and L Kleinwaks, and M Moos
June 2012, Der Unfallchirurg,
S Wang, and M Krinks, and L Kleinwaks, and M Moos
April 2004, The Prostate,
S Wang, and M Krinks, and L Kleinwaks, and M Moos
June 1991, Biochimica et biophysica acta,
S Wang, and M Krinks, and L Kleinwaks, and M Moos
August 2005, Nihon rinsho. Japanese journal of clinical medicine,
S Wang, and M Krinks, and L Kleinwaks, and M Moos
February 2005, Revue medicale suisse,
S Wang, and M Krinks, and L Kleinwaks, and M Moos
February 2015, The Biochemical journal,
S Wang, and M Krinks, and L Kleinwaks, and M Moos
November 2006, Osteoarthritis and cartilage,
S Wang, and M Krinks, and L Kleinwaks, and M Moos
July 2006, Der Unfallchirurg,
S Wang, and M Krinks, and L Kleinwaks, and M Moos
January 2020, Cells,
Copied contents to your clipboard!