FLT-3 ligand provides hematopoietic protection from total body irradiation in rabbits. 1998

A Gratwohl, and L John, and H Baldomero, and J Roth, and A Tichelli, and C Nissen, and S D Lyman, and A Wodnar-Filipowicz
Division of Hematology, the Department of Research, Hematology Laboratory, and the Department of Radiation Physics, Kantonsspital, Basel, Switzerland.

Several hematopoietic cytokines have been investigated for their potential to provide protection from the lethal consequences of bone marrow aplasia after total body irradiation (TBI). Some can increase the dose of irradiation tolerated by the animals; none allow endogenous recovery after doses such as administered in clinical blood or marrow transplantation. We tested the radioprotective potential of FLT-3 ligand, an early acting hematopoietic cytokine, alone and in combination with a late acting cytokine, granulocyte-colony stimulating factor (G-CSF). Adult outbred New Zealand White rabbits were submitted to TBI of 1,200 or 1,400 cGy by a Co60 source. Recombinant human (rh) FLT-3 ligand at a dose of 500 microg/kg and/or rhG-CSF at a dose of 10 microg/kg were administered for 14 days subcutaneously daily, beginning either 2 days before or the day after TBI. All control animals given no growth factors died of aplasia at day 10 (range, 5 to 16). All 8 animals given G-CSF had severe aplasia and 7 died at day 8 (range, 5 to 10); 1 animal survived, with G-CSF being administered before TBI. In contrast, 11 of 12 animals given FLT-3 ligand, with or without G-CSF, survived. Radioprotection was best in the group given FLT-3 ligand together with G-CSF before TBI. In these animals median platelet counts were never <10 x 10(9)/L and median white blood cell counts never <0.5 x 10(9)/L. These data show that hematopoietic recovery can occur after 1,400 cGy TBI in rabbits, if protected by FLT-3 ligand, and suggest a radioprotective clinical potential of this cytokine.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011833 Radiation Injuries, Experimental Experimentally produced harmful effects of ionizing or non-ionizing RADIATION in CHORDATA animals. Experimental Radiation Injuries,Injuries, Experimental Radiation,Experimental Radiation Injury,Radiation Injury, Experimental
D011837 Radiation-Protective Agents Drugs used to protect against ionizing radiation. They are usually of interest for use in radiation therapy but have been considered for other purposes, e.g. military. Radiation Protectant,Radiation Protective Agent,Radiation-Protective Agent,Radiation-Protective Drug,Radioprotective Agent,Radioprotective Agents,Radioprotective Drug,Agents, Radiation-Protective,Radiation Protectants,Radiation Protective Agents,Radiation-Protective Drugs,Radiation-Protective Effect,Radiation-Protective Effects,Radioprotective Drugs,Agent, Radiation Protective,Agent, Radiation-Protective,Agent, Radioprotective,Agents, Radiation Protective,Agents, Radioprotective,Drug, Radiation-Protective,Drug, Radioprotective,Drugs, Radiation-Protective,Drugs, Radioprotective,Effect, Radiation-Protective,Effects, Radiation-Protective,Protectant, Radiation,Protectants, Radiation,Protective Agent, Radiation,Protective Agents, Radiation,Radiation Protective Drug,Radiation Protective Drugs,Radiation Protective Effect,Radiation Protective Effects
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000741 Anemia, Aplastic A form of anemia in which the bone marrow fails to produce adequate numbers of peripheral blood elements. Anemia, Hypoplastic,Aplastic Anaemia,Aplastic Anemia,Anaemia, Aplastic,Aplastic Anaemias,Aplastic Anemias,Hypoplastic Anemia,Hypoplastic Anemias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Gratwohl, and L John, and H Baldomero, and J Roth, and A Tichelli, and C Nissen, and S D Lyman, and A Wodnar-Filipowicz
March 1961, JAMA,
A Gratwohl, and L John, and H Baldomero, and J Roth, and A Tichelli, and C Nissen, and S D Lyman, and A Wodnar-Filipowicz
May 2013, Journal of radiation research,
A Gratwohl, and L John, and H Baldomero, and J Roth, and A Tichelli, and C Nissen, and S D Lyman, and A Wodnar-Filipowicz
January 1962, Comptes rendus de l'Academie Bulgare des sciences : sciences mathematiques et naturelles,
A Gratwohl, and L John, and H Baldomero, and J Roth, and A Tichelli, and C Nissen, and S D Lyman, and A Wodnar-Filipowicz
November 2003, Experimental hematology,
A Gratwohl, and L John, and H Baldomero, and J Roth, and A Tichelli, and C Nissen, and S D Lyman, and A Wodnar-Filipowicz
February 1998, European journal of haematology,
A Gratwohl, and L John, and H Baldomero, and J Roth, and A Tichelli, and C Nissen, and S D Lyman, and A Wodnar-Filipowicz
June 1958, The American journal of roentgenology, radium therapy, and nuclear medicine,
A Gratwohl, and L John, and H Baldomero, and J Roth, and A Tichelli, and C Nissen, and S D Lyman, and A Wodnar-Filipowicz
January 1953, Journal de radiologie, d'electrologie & archives d'electricite medicale,
A Gratwohl, and L John, and H Baldomero, and J Roth, and A Tichelli, and C Nissen, and S D Lyman, and A Wodnar-Filipowicz
January 2020, Oxidative medicine and cellular longevity,
A Gratwohl, and L John, and H Baldomero, and J Roth, and A Tichelli, and C Nissen, and S D Lyman, and A Wodnar-Filipowicz
October 2009, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
A Gratwohl, and L John, and H Baldomero, and J Roth, and A Tichelli, and C Nissen, and S D Lyman, and A Wodnar-Filipowicz
January 2006, Blood,
Copied contents to your clipboard!