Three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate: catalytic roles of Cys10 and His106. 1998

M Nishida, and S Harada, and S Noguchi, and Y Satow, and H Inoue, and K Takahashi
Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Tokyo, Bunkyo-ku, 113-0033, Japan.

Cytosolic glutathione S-transferase is a family of multi-functional enzymes involved in the detoxification of a large variety of xenobiotic and endobiotic compounds through glutathione conjugation. The three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate, N-(N-L-gamma-glutamyl-3-sulfo-L-alanyl)-glycine, has been determined by the multiple isomorphous replacement method and refined to a crystallographic R factor of 0.183 at 2.1 A resolution. The E. coli enzyme is a globular homodimer with dimensions of 58 Ax56 Ax52 A. Each subunit, consisting of a polypeptide of 201 amino acid residues, is divided into a smaller N-terminal domain (residues 1 to 80) and a larger C-terminal one (residues 89 to 201). The core of the N-terminal domain is constructed by a four-stranded beta-sheet and two alpha-helices, and that of the C-terminal one is constructed by a right-handed bundle of four alpha-helices. Glutathione sulfonate, a competitive inhibitor against glutathione, is bound in a cleft between the N and C-terminal domains. Therefore, the E. coli enzyme conserves overall constructions common to the eukaryotic enzymes, in its polypeptide fold, dimeric assembly, and glutathione-binding site. In the case of the eukaryotic enzymes, tyrosine and serine residues near the N terminus are located in the proximity of the sulfur atom of the bound glutathione, and are proposed to be catalytically essential. In the E. coli enzyme, Tyr5 and Ser11 corresponding to these residues are not involved in the interaction with the inhibitor, although they are located in the vicinity of catalytic site. Instead, Cys10 N and His106 Nepsilon2 atoms are hydrogen-bonded to the sulfonate group of the inhibitor. On the basis of this structural study, Cys10 and His106 are ascribed to the catalytic residues that are distinctive from the family of the eukaryotic enzymes. We propose that glutathione S-transferases have diverged from a common origin and acquired different catalytic apparatuses in the process of evolution.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005057 Eukaryotic Cells Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane. Cell, Eukaryotic,Cells, Eukaryotic,Eukaryotic Cell
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

M Nishida, and S Harada, and S Noguchi, and Y Satow, and H Inoue, and K Takahashi
August 1991, The EMBO journal,
M Nishida, and S Harada, and S Noguchi, and Y Satow, and H Inoue, and K Takahashi
August 1998, The Biochemical journal,
M Nishida, and S Harada, and S Noguchi, and Y Satow, and H Inoue, and K Takahashi
March 2004, Journal of microbiology (Seoul, Korea),
M Nishida, and S Harada, and S Noguchi, and Y Satow, and H Inoue, and K Takahashi
July 2014, Acta crystallographica. Section D, Biological crystallography,
M Nishida, and S Harada, and S Noguchi, and Y Satow, and H Inoue, and K Takahashi
August 2004, Biochemical and biophysical research communications,
M Nishida, and S Harada, and S Noguchi, and Y Satow, and H Inoue, and K Takahashi
November 1975, Archives of biochemistry and biophysics,
M Nishida, and S Harada, and S Noguchi, and Y Satow, and H Inoue, and K Takahashi
December 1994, Toxicon : official journal of the International Society on Toxinology,
M Nishida, and S Harada, and S Noguchi, and Y Satow, and H Inoue, and K Takahashi
April 1994, Journal of molecular biology,
M Nishida, and S Harada, and S Noguchi, and Y Satow, and H Inoue, and K Takahashi
November 1989, Journal of bacteriology,
M Nishida, and S Harada, and S Noguchi, and Y Satow, and H Inoue, and K Takahashi
February 1994, Structure (London, England : 1993),
Copied contents to your clipboard!