The effect of sevoflurane on myogenic motor-evoked potentials induced by single and paired transcranial electrical stimulation of the motor cortex during nitrous oxide/ketamine/fentanyl anesthesia. 1998

M Kawaguchi, and S Inoue, and M Kakimoto, and K Kitaguchi, and H Furuya, and T Morimoto, and T Sakaki
Department of Anesthesiology, Nara Medical University, Kashihara, Japan.

To overcome anesthetic-induced depression of myogenic motor-evoked potentials (MEPs), several techniques of stimulation using paired pulses or trains of pulses are used. This study investigated the effect of sevoflurane on myogenic MEPs induced by single and paired transcranial electrical stimulation of the motor cortex. Nine patients undergoing elective spinal surgery were anesthetized with fentanyl-N2O-ketamine. Partial neuromuscular blockade (single-twitch height 15% of baseline) was maintained with vecuronium. Single and paired (interstimulus interval 2 milliseconds) electrical stimuli were delivered to the scalp, and compound muscle action potentials were recorded from the left and right tibialis anterior muscles. In all patients, baseline MEPs were recorded from both the left and right anterior tibialis muscles (in a total of 18 legs). During the administration of 0.25 MAC and 0.5 MAC sevoflurane, MEPs induced by stimulation with a single pulse could be recorded in 12 of 18 and 4 of 18 legs, respectively, and MEP amplitude was significantly reduced to 48% and 4% of the control value, respectively. During the administration of 0.75 MAC sevoflurane, MEPs following single-pulse stimulation could not be recorded in any legs. The success rate of MEP recording during the administration of sevoflurane was greater after paired stimulation than after single stimulation, and percentage MEP amplitude (percentage of the control value after single stimulation but before sevoflurane) after paired stimulation was significantly higher than after single stimulation before and during the administration of 0.25 MAC and 0.5 MAC sevoflurane. The success rate of MEP recording and MEP amplitude after paired stimulation decreased in a dose-dependent manner during the administration of sevoflurane. These results suggest that although facilitation by the second stimulus was considerable, paired stimuli are still not sufficient to overcome the depressant effects of sevoflurane in clinically used concentrations.

UI MeSH Term Description Entries
D007649 Ketamine A cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE) and may interact with sigma receptors. 2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone,CI-581,Calipsol,Calypsol,Kalipsol,Ketalar,Ketamine Hydrochloride,Ketanest,Ketaset,CI 581,CI581
D008297 Male Males
D008738 Methyl Ethers A group of compounds that contain the general formula R-OCH3. Ethers, Methyl
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009609 Nitrous Oxide Nitrogen oxide (N2O). A colorless, odorless gas that is used as an anesthetic and analgesic. High concentrations cause a narcotic effect and may replace oxygen, causing death by asphyxia. It is also used as a food aerosol in the preparation of whipping cream. Laughing Gas,Nitrogen Protoxide,Gas, Laughing,Oxide, Nitrous
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D003473 Neuromuscular Nondepolarizing Agents Drugs that interrupt transmission at the skeletal neuromuscular junction without causing depolarization of the motor end plate. They prevent acetylcholine from triggering muscle contraction and are used as muscle relaxants during electroshock treatments, in convulsive states, and as anesthesia adjuvants. Curare-Like Agents,Curariform Drugs,Muscle Relaxants, Non-Depolarizing,Neuromuscular Blocking Agents, Competitive,Nondepolarizing Blockers,Agents, Curare-Like,Agents, Neuromuscular Nondepolarizing,Blockers, Nondepolarizing,Curare Like Agents,Drugs, Curariform,Muscle Relaxants, Non Depolarizing,Non-Depolarizing Muscle Relaxants,Nondepolarizing Agents, Neuromuscular
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

M Kawaguchi, and S Inoue, and M Kakimoto, and K Kitaguchi, and H Furuya, and T Morimoto, and T Sakaki
August 1995, Anesthesiology,
M Kawaguchi, and S Inoue, and M Kakimoto, and K Kitaguchi, and H Furuya, and T Morimoto, and T Sakaki
March 1999, Anesthesia and analgesia,
M Kawaguchi, and S Inoue, and M Kakimoto, and K Kitaguchi, and H Furuya, and T Morimoto, and T Sakaki
July 1998, Neurosurgery,
M Kawaguchi, and S Inoue, and M Kakimoto, and K Kitaguchi, and H Furuya, and T Morimoto, and T Sakaki
February 1999, Journal of cardiothoracic and vascular anesthesia,
M Kawaguchi, and S Inoue, and M Kakimoto, and K Kitaguchi, and H Furuya, and T Morimoto, and T Sakaki
March 1996, Anesthesia and analgesia,
M Kawaguchi, and S Inoue, and M Kakimoto, and K Kitaguchi, and H Furuya, and T Morimoto, and T Sakaki
April 1996, Anesthesia and analgesia,
M Kawaguchi, and S Inoue, and M Kakimoto, and K Kitaguchi, and H Furuya, and T Morimoto, and T Sakaki
June 1993, Ma zui xue za zhi = Anaesthesiologica Sinica,
M Kawaguchi, and S Inoue, and M Kakimoto, and K Kitaguchi, and H Furuya, and T Morimoto, and T Sakaki
March 1999, British journal of anaesthesia,
M Kawaguchi, and S Inoue, and M Kakimoto, and K Kitaguchi, and H Furuya, and T Morimoto, and T Sakaki
August 1990, Masui. The Japanese journal of anesthesiology,
Copied contents to your clipboard!