Localization of mesial temporal lobe seizures with sphenoidal electrodes. 1998

S V Pacia, and W J Jung, and O Devinsky
Department of Neurology, New York University School of Medicine, Hospital for Joint Diseases, New York 10003, USA.

Few studies have compared sphenoidal electrodes with scalp electrodes to determine their localizing value in temporal lobe seizures. We reviewed 76 ictal recordings with the standard International 10-20 System and T1/2 and sphenoidal electrodes from 31 patients whose subsequent intracranial EEG studies precisely localized seizures in one temporal lobe. Ictal EEGs were reviewed in a blinded fashion in both longitudinal bipolar and referential montages. Of the 23 seizures in 11 patients with mesial temporal lobe epilepsy (MTLE), all seven seizures in 3 patients were localized exclusively to one sphenoidal electrode, before involvement of T1/2 and temporal scalp electrodes. The remaining 16 seizures from 8 MTLE patients and all 53 seizures in the 20 patients with neocortical temporal lobe epilepsy (NTLE) had simultaneous involvement of sphenoidal, T1/2, and temporal scalp electrodes at seizure onset when analyzed with referential montages. Sphenoidal electrodes may provide valuable localization data for presurgical evaluation of patients with possible TLE. In particular, seizure rhythms confined to the sphenoidal electrode at ictal onset, without involvement of scalp electrodes, occurred only in patients with MTLE (p < 0.04). Further studies comparing these electrodes with other types of surface electrodes are needed.

UI MeSH Term Description Entries
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004833 Epilepsy, Temporal Lobe A localization-related (focal) form of epilepsy characterized by recurrent seizures that arise from foci within the TEMPORAL LOBE, most commonly from its mesial aspect. A wide variety of psychic phenomena may be associated, including illusions, hallucinations, dyscognitive states, and affective experiences. The majority of complex partial seizures (see EPILEPSY, COMPLEX PARTIAL) originate from the temporal lobes. Temporal lobe seizures may be classified by etiology as cryptogenic, familial, or symptomatic. (From Adams et al., Principles of Neurology, 6th ed, p321). Epilepsy, Benign Psychomotor, Childhood,Benign Psychomotor Epilepsy, Childhood,Childhood Benign Psychomotor Epilepsy,Epilepsy, Lateral Temporal,Epilepsy, Uncinate,Epilepsies, Lateral Temporal,Epilepsies, Temporal Lobe,Epilepsies, Uncinate,Lateral Temporal Epilepsies,Lateral Temporal Epilepsy,Temporal Lobe Epilepsies,Temporal Lobe Epilepsy,Uncinate Epilepsies,Uncinate Epilepsy
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D012815 Signal Processing, Computer-Assisted Computer-assisted processing of electric, ultrasonic, or electronic signals to interpret function and activity. Digital Signal Processing,Signal Interpretation, Computer-Assisted,Signal Processing, Digital,Computer-Assisted Signal Interpretation,Computer-Assisted Signal Interpretations,Computer-Assisted Signal Processing,Interpretation, Computer-Assisted Signal,Interpretations, Computer-Assisted Signal,Signal Interpretation, Computer Assisted,Signal Interpretations, Computer-Assisted,Signal Processing, Computer Assisted
D013101 Sphenoid Sinus One of the paired air spaces located in the body of the SPHENOID BONE behind the ETHMOID BONE in the middle of the skull. Sphenoid sinus communicates with the posterosuperior part of NASAL CAVITY on the same side. Sinus, Sphenoid
D013701 Temporal Bone Either of a pair of compound bones forming the lateral (left and right) surfaces and base of the skull which contains the organs of hearing. It is a large bone formed by the fusion of parts: the squamous (the flattened anterior-superior part), the tympanic (the curved anterior-inferior part), the mastoid (the irregular posterior portion), and the petrous (the part at the base of the skull). Stylomastoid Foramen,Bone, Temporal,Temporal Bones
D013702 Temporal Lobe Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE. Anterior Temporal Lobe,Brodmann Area 20,Brodmann Area 21,Brodmann Area 22,Brodmann Area 37,Brodmann Area 38,Brodmann Area 52,Brodmann's Area 20,Brodmann's Area 21,Brodmann's Area 22,Brodmann's Area 37,Brodmann's Area 38,Brodmann's Area 52,Inferior Temporal Gyrus,Middle Temporal Gyrus,Parainsular Area,Fusiform Gyrus,Gyrus Fusiformis,Gyrus Temporalis Superior,Inferior Horn of Lateral Ventricle,Inferior Horn of the Lateral Ventricle,Lateral Occipito-Temporal Gyrus,Lateral Occipitotemporal Gyrus,Occipitotemporal Gyrus,Planum Polare,Superior Temporal Gyrus,Temporal Cortex,Temporal Gyrus,Temporal Horn,Temporal Horn of the Lateral Ventricle,Temporal Operculum,Temporal Region,Temporal Sulcus,Anterior Temporal Lobes,Area 20, Brodmann,Area 20, Brodmann's,Area 21, Brodmann,Area 21, Brodmann's,Area 22, Brodmann,Area 22, Brodmann's,Area 37, Brodmann,Area 37, Brodmann's,Area 38, Brodmann,Area 38, Brodmann's,Area 52, Brodmann,Area 52, Brodmann's,Area, Parainsular,Areas, Parainsular,Brodmanns Area 20,Brodmanns Area 21,Brodmanns Area 22,Brodmanns Area 37,Brodmanns Area 38,Brodmanns Area 52,Cortex, Temporal,Gyrus, Fusiform,Gyrus, Inferior Temporal,Gyrus, Lateral Occipito-Temporal,Gyrus, Lateral Occipitotemporal,Gyrus, Middle Temporal,Gyrus, Occipitotemporal,Gyrus, Superior Temporal,Gyrus, Temporal,Horn, Temporal,Lateral Occipito Temporal Gyrus,Lobe, Anterior Temporal,Lobe, Temporal,Occipito-Temporal Gyrus, Lateral,Occipitotemporal Gyrus, Lateral,Operculum, Temporal,Parainsular Areas,Region, Temporal,Sulcus, Temporal,Temporal Cortices,Temporal Gyrus, Inferior,Temporal Gyrus, Middle,Temporal Gyrus, Superior,Temporal Horns,Temporal Lobe, Anterior,Temporal Lobes,Temporal Lobes, Anterior,Temporal Regions

Related Publications

S V Pacia, and W J Jung, and O Devinsky
October 1989, Neurology,
S V Pacia, and W J Jung, and O Devinsky
January 2021, Frontiers in neurology,
S V Pacia, and W J Jung, and O Devinsky
May 1956, Journal of neurology, neurosurgery, and psychiatry,
S V Pacia, and W J Jung, and O Devinsky
June 1990, Presse medicale (Paris, France : 1983),
S V Pacia, and W J Jung, and O Devinsky
June 2002, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
S V Pacia, and W J Jung, and O Devinsky
January 1995, The Journal of neuropsychiatry and clinical neurosciences,
S V Pacia, and W J Jung, and O Devinsky
September 2009, Ideggyogyaszati szemle,
S V Pacia, and W J Jung, and O Devinsky
January 1967, Acta neurologica Scandinavica,
Copied contents to your clipboard!