Involvement of human cytochrome P450 3A4 in reduced haloperidol oxidation. 1998

S Kudo, and M Odomi
Tokushima Research Institute, Otsuka Pharmaceutical Co. Ltd, Japan.

OBJECTIVE The present study was conducted to identify in vitro the cytochrome P450(CYP) isoform involved in the metabolic conversion of reduced haloperidol to haloperidol using microsomes derived from human AHH-1 TK +/- cells expressing human cytochrome P450s. The inhibitory and/or stimulatory effects of reduced haloperidol or haloperidol on CYP2D6-catalyzed carteolol 8-hydroxylase activity were also investigated. RESULTS The CYP isoform involved in the oxidation of reduced haloperidol to haloperidol was CYP3A4. CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 2E1 were not involved in the oxidation. The kM value for the CYP3A4 expressed in the cells was 69.7 micromol x l(-1), and the Vmax was 4.87 pmol x min(-1) x pmol(-1) P450. Troleandomycin, a relatively selective probe for CYP3A enzymes, inhibited the CYP3A4-mediated oxidation of reduced haloperidol in a dose-dependent manner. Quinidine and sparteine competitively inhibited the oxidative reaction with a k(i) value of 24.9 and 1390 micromol x l(-1), respectively. Carteolol 8-hydroxylase activity, which is a selective reaction probe for CYP2D6 activity, was inhibited by reduced haloperidol with a k(i) value of 4.3 micromol x l(-1). Haloperidol stimulated the CYP2D6-mediated carteolol 8-hydroxylase activity with an optimum concentration of 1 micromol x l(-1), whereas higher concentrations of the compound (> 10 micromol x l(-1)) inhibited the hydroxylase activity. CONCLUSIONS It was concluded that CYP3A4, not CYP2D6, is the principal isoform of cytochrome P450 involved in the metabolic conversion of reduced haloperidol to haloperidol. It was further found that reduced haloperidol is a substrate of CYP3A4 and an inhibitor of CYP2D6, and that haloperidol has both stimulatory and inhibitory effects on CYP2D6 activity.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011802 Quinidine An optical isomer of quinine, extracted from the bark of the CHINCHONA tree and similar plant species. This alkaloid dampens the excitability of cardiac and skeletal muscles by blocking sodium and potassium currents across cellular membranes. It prolongs cellular ACTION POTENTIALS, and decreases automaticity. Quinidine also blocks muscarinic and alpha-adrenergic neurotransmission. Adaquin,Apo-Quinidine,Chinidin,Quincardine,Quinidex,Quinidine Sulfate,Quinora,Apo Quinidine,Sulfate, Quinidine
D002354 Carteolol A beta-adrenergic antagonist used as an anti-arrhythmia agent, an anti-angina agent, an antihypertensive agent, and an antiglaucoma agent. Carteolol Hydrochloride,Carteolol Monohydrochloride,OPC-1085,Hydrochloride, Carteolol,Monohydrochloride, Carteolol,OPC 1085,OPC1085
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol

Related Publications

S Kudo, and M Odomi
January 2009, Nature protocols,
S Kudo, and M Odomi
January 2017, Proceedings of the National Academy of Sciences of the United States of America,
S Kudo, and M Odomi
January 2006, Acta poloniae pharmaceutica,
S Kudo, and M Odomi
December 1995, Toxicology,
S Kudo, and M Odomi
May 2011, The Journal of biological chemistry,
S Kudo, and M Odomi
January 2005, Trends in biochemical sciences,
Copied contents to your clipboard!