Contractile effects of polycations in permeabilized smooth muscle. 1998

K Swärd, and K Dreja, and P Hellstrand
Department of Physiology and Neuroscience, Lund University, Sweden.

The polycations spermine, neomycin and polylysine potentiated Ca(2+)-activated force in beta-escin permeabilized guinea-pig ileum strips. The effect was inhibited by the calmodulin antagonists trifluoperazine, mastoparan and W13. Potentiation was slow or absent in chi-toxin permeabilized strips, indicating dependence on penetration of the polycations into cells. The effects of spermine and neomycin were maintained after extensive permeabilization by beta-escin, which eliminated the contractile effect of GTPgammaS. Replacement of ATP by CTP, which is not a substrate for myosin light chain kinase, inhibited contractile potentiation. Potentiation of Ca(2+)-activated contractions was associated with increased phosphorylation of the myosin regulatory light chains (LC20). A contractile effect of polylysine and neomycin was also seen in Ca(2+)-free medium and after partial LC20 thiophosphorylation, indicating that phosphorylation-independent processes may contribute to the response. Although spermine does not cause contraction in Ca(2+)-free medium at physiological [MgATP], it did so when [MgATP] was lowered to 40 micron. Similar to high-[Mg2+], the rate of contraction on addition of ATP to strips incubated with microcystin-LR in inhibit phosphatase activity was increased by the polycations, but only at [Ca2+] < 0.3 micron. The results suggest that polycations increase Ca(2+)-activated force by inhibiting myosin phosphatase activity, thereby increasing myosin LC20 phosphorylation. However, additional activation mechanisms, evident at low [Ca2+] and at low [ATP] and possibly involving direct activation of myosin, contribute to their effect.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009219 Myosin-Light-Chain Kinase An enzyme that phosphorylates myosin light chains in the presence of ATP to yield myosin-light chain phosphate and ADP, and requires calcium and CALMODULIN. The 20-kDa light chain is phosphorylated more rapidly than any other acceptor, but light chains from other myosins and myosin itself can act as acceptors. The enzyme plays a central role in the regulation of smooth muscle contraction. Myosin Kinase,Myosin LCK,Myosin Regulatory Light-Chain Kinase,Kinase, Myosin,Kinase, Myosin-Light-Chain,LCK, Myosin,Myosin Light Chain Kinase,Myosin Regulatory Light Chain Kinase
D009355 Neomycin Aminoglycoside antibiotic complex produced by Streptomyces fradiae. It is composed of neomycins A, B, and C, and acts by inhibiting translation during protein synthesis. Fradiomycin Sulfate,Neomycin Palmitate,Neomycin Sulfate
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D011107 Polylysine A peptide which is a homopolymer of lysine. Epsilon-Polylysine,Poly-(Alpha-L-Lysine),Epsilon Polylysine

Related Publications

K Swärd, and K Dreja, and P Hellstrand
October 2003, Analytical biochemistry,
K Swärd, and K Dreja, and P Hellstrand
January 1993, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
K Swärd, and K Dreja, and P Hellstrand
March 1985, Clinical allergy,
K Swärd, and K Dreja, and P Hellstrand
December 1990, Yonsei medical journal,
K Swärd, and K Dreja, and P Hellstrand
January 1989, The American journal of physiology,
K Swärd, and K Dreja, and P Hellstrand
January 1968, Symposia of the Society for Experimental Biology,
K Swärd, and K Dreja, and P Hellstrand
June 1994, The American journal of physiology,
K Swärd, and K Dreja, and P Hellstrand
January 2016, Methods in molecular biology (Clifton, N.J.),
K Swärd, and K Dreja, and P Hellstrand
April 1973, The Journal of pharmacology and experimental therapeutics,
K Swärd, and K Dreja, and P Hellstrand
January 1991, Blood vessels,
Copied contents to your clipboard!