Adenosinergic modulation of ethanol-induced motor incoordination in the rat motor cortex. 1998

V S Barwick, and M S Dar
Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC, USA.

1. On going work in our laboratory has shown that adenosine modulates ethanol-induced motor incoordination (EIMI) when given systemically as well as directly into the cerebral ventricles, cerebellum and corpus striatum of the rat and/or mouse. 2. The objective of this study was to determine what effect adenosine agonists and antagonists would have within the rat motor cortex on EIMI. 3. The participation of the motor cortex in EIMI was suggested when microinfusion of the anti-ethanol compound, Ro15-4513, an inverse agonist of the benzodiazepine binding site, directly into the motor cortex significantly attenuated EIMI. Further, the adenosine agonists N6-cyclohexyladenosine (CHA) and 2-p-(2-carboxyethyl)-phenethylamino-5'-N-carboxaminoadenosine++ + hydrochloride (CGS-21680) significantly accentuated EIMI in a dose-related manner. The adenosine A1 receptor-selective agonist, CHA, appeared most potent in this modulatory effect when compared to the A2-selective agonist, CGS-21680. 4. The extent of diffusion of the adenosine drugs within the cortical tissue after their microinfusion was also checked by measuring the dispersion of microinfused [3H]CHA. The [3H]CHA dispersion study indirectly confirmed that the results of the present investigation were based on the effect of adenosine drugs within the motor cortex only. 5. Accentuation by the A1- and A2-selective adenosine agonists was significantly attenuated by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) but not by the A2 receptor-selective antagonist 8-(3-chlorostyryl)caffeine (CSC) further suggesting modulation mainly by the A1-subtype. 6. Pretreatment of the motor cortex with pertussis toxin (PT) significantly reduced the capacity of both A1- and A2-selective adenosine agonists to accentuate EIMI suggesting the involvement of a PT-sensitive Gi/Go protein. 7. These data support earlier work which showed that adenosine modulates EIMI within the central nervous system (CNS), most likely via the A1 receptor, and moreover, extend that work by including the motor cortex as a brain area participating in the adenosinergic modulation of ethanol-induced motor impairment.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001259 Ataxia Impairment of the ability to perform smoothly coordinated voluntary movements. This condition may affect the limbs, trunk, eyes, pharynx, larynx, and other structures. Ataxia may result from impaired sensory or motor function. Sensory ataxia may result from posterior column injury or PERIPHERAL NERVE DISEASES. Motor ataxia may be associated with CEREBELLAR DISEASES; CEREBRAL CORTEX diseases; THALAMIC DISEASES; BASAL GANGLIA DISEASES; injury to the RED NUCLEUS; and other conditions. Coordination Impairment,Dyssynergia,Incoordination,Ataxia, Appendicular,Ataxia, Limb,Ataxia, Motor,Ataxia, Sensory,Ataxia, Truncal,Ataxy,Dyscoordination,Lack of Coordination,Tremor, Rubral,Appendicular Ataxia,Appendicular Ataxias,Ataxias,Ataxias, Appendicular,Ataxias, Limb,Ataxias, Motor,Ataxias, Sensory,Ataxias, Truncal,Coordination Impairments,Coordination Lack,Impairment, Coordination,Impairments, Coordination,Incoordinations,Limb Ataxia,Limb Ataxias,Motor Ataxia,Motor Ataxias,Rubral Tremor,Rubral Tremors,Sensory Ataxia,Sensory Ataxias,Tremors, Rubral,Truncal Ataxia,Truncal Ataxias
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

V S Barwick, and M S Dar
April 1998, Alcoholism, clinical and experimental research,
V S Barwick, and M S Dar
December 1990, The Journal of pharmacology and experimental therapeutics,
V S Barwick, and M S Dar
January 1993, Alcohol and alcoholism (Oxford, Oxfordshire). Supplement,
V S Barwick, and M S Dar
September 2002, Alcoholism, clinical and experimental research,
Copied contents to your clipboard!