Opposite base-dependent excision of 7,8-dihydro-8-oxoadenine by the Ogg1 protein of Saccharomyces cerevisiae. 1998

P M Girard, and C D'Ham, and J Cadet, and S Boiteux
Département de Radiobiologie et Radiopathologie, UMR217 CNRS-CEA, Radiobiologie Moléculaire et Cellulaire, Fontenay aux Roses, France.

The yOgg1 protein of Saccharomyces cerevisiae is a DNA glycosylase/AP lyase that excises guanine lesions such as 7,8-dihydro-8-oxoguanine (8-OxoG) and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (me-Fapy-G) and incises apurinic/apyrimidinic sites (AP sites) in damaged DNA. The yOgg1 protein displays a marked preference for DNA duplexes containing 8-OxoG or AP sites placed opposite cytosine. In this paper, we show that yOgg1 can also excise an adenine lesion, 7,8-dihydro-8-oxoadenine (8-OxoA), when paired with cytosine or 5-methylcytosine. In contrast, yOgg1 does not release 8-OxoA when placed opposite thymine, adenine, guanine or uracil. The specificity constants (Kcat/Km) for repair of 8-OxoG/C and 8-OxoA/C duplexes are (50 +/- 18) x 10(-3) and (13 +/- 3) x 10(-3)/min/nM, respectively. The catalytic mechanism for strand cleavage at 8-OxoA/C involves excision of 8-OxoA by the DNA glycosylase activity of yOgg1, followed by incision at the newly formed AP site via a beta-elimination reaction. Furthermore, cleavage of 8-OxoA/C involves formation of a reaction intermediate that is converted into a stable covalent adduct in the presence of sodium borohydride (NaBH4). The yOgg1 protein binds strongly to the 8-OxoA/C duplex, as demonstrated by an apparent dissociation constant (Kdapp) value of 45 nM, as determined by gel mobility shift assay. In contrast, the yOgg1 protein has a very low binding affinity for the 8-OxoA/T duplex, a Kdapp value of 680 nM, which in turn can explain the lack of repair of 8-OxoA in this duplex. The capacity of other DNA glycosylases/AP lyases to repair 8-OxoA has also been investigated. The results show that human hOgg1 protein efficiently repairs 8-OxoA placed opposite cytosine or 5-methylcytosine. On the other hand, the Fpg protein of Escherichia coli cleaves 8-OxoA/C at a very slow rate as compared with yOgg1.

UI MeSH Term Description Entries
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D003596 Cytosine A pyrimidine base that is a fundamental unit of nucleic acids.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

P M Girard, and C D'Ham, and J Cadet, and S Boiteux
November 1982, International journal of radiation biology and related studies in physics, chemistry, and medicine,
P M Girard, and C D'Ham, and J Cadet, and S Boiteux
March 2005, Molecular and cellular biology,
P M Girard, and C D'Ham, and J Cadet, and S Boiteux
May 1998, Nucleic acids research,
P M Girard, and C D'Ham, and J Cadet, and S Boiteux
August 2020, The Biochemical journal,
P M Girard, and C D'Ham, and J Cadet, and S Boiteux
May 2020, Nucleic acids research,
P M Girard, and C D'Ham, and J Cadet, and S Boiteux
March 2021, Nature communications,
P M Girard, and C D'Ham, and J Cadet, and S Boiteux
April 1991, Nucleic acids research,
Copied contents to your clipboard!