Adaptation of pharmacomechanical coupling of vascular smooth muscle to chronic hypoxia. 1998

L Zhang
Department of Pharmacology, Loma Linda University School of Medicine, California 92350, USA. lzhang@ccmail.llu.edu

Hypoxia is one of the most common stresses that affect an organism's homeostasis. Although much is known of the mechanisms of the cellular and biochemical responses to acute hypoxia, relatively little is known of the mechanisms of the responses to prolonged or chronic hypoxia. Chronic hypoxia suppresses vascular smooth muscle contractility in many vascular beds. While the endothelium is likely to play a role, part of the mechanisms underlying chronic hypoxic-induced changes in vascular responses resides in the changes in receptor-mediated excitation-contraction coupling and/or signal transduction in the vascular smooth muscle. Recent studies have demonstrated that chronic hypoxia attenuates both receptor-second messenger and second messenger-contraction coupling efficiencies in the vascular smooth muscle. This suppression of pharmacomechanical coupling is likely to represent one of the adaptive mechanisms of vascular smooth muscle and to play an important role in an adjustment of vascular tone and blood flow under the stress of moderate chronic hypoxia.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger

Related Publications

L Zhang
January 1968, The Journal of pharmacology and experimental therapeutics,
L Zhang
January 1991, Japanese journal of pharmacology,
L Zhang
January 1968, Federation proceedings,
L Zhang
November 1984, Proceedings of the National Academy of Sciences of the United States of America,
L Zhang
January 2003, Advances in experimental medicine and biology,
L Zhang
January 1987, Annual review of physiology,
L Zhang
October 1980, Quarterly journal of experimental physiology and cognate medical sciences,
Copied contents to your clipboard!