Alterations in basal protein kinase C activity modulate renal afferent arteriolar myogenic reactivity. 1998

C A Kirton, and R Loutzenhiser
Smooth Muscle Research Group, Department of Pharmacology and Therapeutics, The University of Calgary, Calgary, Alberta, Canada T2N 4N1.

Myogenic vasoconstriction of the renal afferent arteriole contributes to the autoregulation of renal blood flow, glomerular filtration rate, and glomerular capillary pressure (PGC). The reactivity of the afferent arteriole to pressure and the efficiency of PGC control are subject to physiological and pathophysiological alterations, but the determinants of the myogenic response of this vessel are largely unknown. We used the in vitro perfused hydronephrotic rat kidney to investigate the role of protein kinase C (PKC) in the control of this response. Inhibition of PKC by 1 microM chelerythrine attenuated myogenic reactivity but did not affect the afferent arteriole vasoconstrictor response to KCl (35 mM)-induced depolarization. Low concentrations of phorbol ester (10 nM phorbol 12-myristate 13-acetate) and low levels of ANG II or endothelin-1 (3 pM) potentiated myogenic vasoconstriction without affecting basal afferent arteriolar diameters. These actions were blocked by 1 microM chelerythrine, suggesting a PKC-dependent mechanism. Finally, although PKC inhibition attenuated basal myogenic responses, full reactivity to pressure was restored by 1 mM 4-aminopyridine, a pharmacological inhibitor of delayed rectifier K channels, which are known to be modulated by PKC. The ability of 4-aminopyridine to circumvent the effects of PKC inhibition militates against a direct role of PKC in myogenic signaling. We interpret these observations as indicating that basal PKC activity is an important determinant of myogenic reactivity in the renal afferent arteriole. However, PKC activation does not appear to play an obligate role in myogenic signaling in this vessel. We suggest that basal PKC activity directly modulates voltage-gated K channel activity, thereby indirectly affecting myogenic reactivity.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010617 Phenanthridines
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme

Related Publications

C A Kirton, and R Loutzenhiser
November 1990, The American journal of physiology,
C A Kirton, and R Loutzenhiser
January 2017, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
C A Kirton, and R Loutzenhiser
January 1997, Hypertension (Dallas, Tex. : 1979),
C A Kirton, and R Loutzenhiser
September 1993, Diabetes,
C A Kirton, and R Loutzenhiser
February 1991, Circulation research,
C A Kirton, and R Loutzenhiser
September 1994, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
C A Kirton, and R Loutzenhiser
March 2008, The Journal of physiology,
C A Kirton, and R Loutzenhiser
October 1988, Biochemical and biophysical research communications,
C A Kirton, and R Loutzenhiser
April 1985, Biochemical and biophysical research communications,
C A Kirton, and R Loutzenhiser
January 1989, The Italian journal of biochemistry,
Copied contents to your clipboard!