Transition state in the folding of alpha-lactalbumin probed by the 6-120 disulfide bond. 1998

M Ikeguchi, and M Fujino, and M Kato, and K Kuwajima, and S Sugai
Department of Bioengineering, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan. ikeguchi@t.soka.ac.jp

The guanidine hydrochloride concentration dependence of the folding and unfolding rate constants of a derivative of alpha-lactalbumin, in which the 6-120 disulfide bond is selectively reduced and S-carboxymethylated, was measured and compared with that of disulfide-intact alpha-lactalbumin. The concentration dependence of the folding and unfolding rate constants was analyzed on the basis of the two alternative models, the intermediate-controlled folding model and the multiple-pathway folding model, that we had proposed previously. All of the data supported the multiple-pathway folding model. Therefore, the molten globule state that accumulates at an early stage of folding of alpha-lactalbumin is not an obligatory intermediate. The cleavage of the 6-120 disulfide bond resulted in acceleration of unfolding without changing the refolding rate, indicating that the loop closed by the 6-120 disulfide bond is unfolded in the transition state. It is theoretically shown that the chain entropy gain on removing the cross-link from a random coil chain with helical stretches can be comparable to that from an entirely random chain. Therefore, the present result is not inconsistent with the known structure in the molten globule intermediate. Based on this result and other knowledge obtained so far, the structure in the transition state of the folding reaction of alpha-lactalbumin is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007768 Lactalbumin A major protein fraction of milk obtained from the WHEY. alpha-Lactalbumin,alpha-Lactalbumin A,alpha-Lactalbumin B,alpha-Lactalbumin C,alpha Lactalbumin,alpha Lactalbumin A,alpha Lactalbumin B,alpha Lactalbumin C
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide

Related Publications

M Ikeguchi, and M Fujino, and M Kato, and K Kuwajima, and S Sugai
September 1989, Biochemical and biophysical research communications,
M Ikeguchi, and M Fujino, and M Kato, and K Kuwajima, and S Sugai
January 2000, Biochimica et biophysica acta,
M Ikeguchi, and M Fujino, and M Kato, and K Kuwajima, and S Sugai
January 2004, The protein journal,
M Ikeguchi, and M Fujino, and M Kato, and K Kuwajima, and S Sugai
August 2004, Journal of molecular biology,
M Ikeguchi, and M Fujino, and M Kato, and K Kuwajima, and S Sugai
September 1999, Proceedings of the National Academy of Sciences of the United States of America,
M Ikeguchi, and M Fujino, and M Kato, and K Kuwajima, and S Sugai
April 1993, Biochemistry,
M Ikeguchi, and M Fujino, and M Kato, and K Kuwajima, and S Sugai
February 1994, Biochemistry,
M Ikeguchi, and M Fujino, and M Kato, and K Kuwajima, and S Sugai
November 2008, Biochemistry,
M Ikeguchi, and M Fujino, and M Kato, and K Kuwajima, and S Sugai
April 1989, International journal of peptide and protein research,
Copied contents to your clipboard!