Mutants of the CMP-sialic acid transporter causing the Lec2 phenotype. 1998

M Eckhardt, and B Gotza, and R Gerardy-Schahn
Institut für Medizinische Mikrobiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.

Chinese hamster ovary (CHO) mutants belonging to the Lec2 complementation group are unable to translocate CMP-sialic acid to the lumen of the Golgi apparatus. Complementation cloning in these cells has recently been used to isolate cDNAs encoding the CMP-sialic acid transporter from mouse and hamster. The present study was carried out to determine the molecular defects leading to the inactivation of CMP-sialic acid transport. To this end, CMP-sialic acid transporter cDNAs derived from five independent clones of the Lec2 complementation group, were analyzed. Deletions in the coding region were observed for three clones, and single mutants were found to contain an insertion and a point mutation. Epitope-tagged variants of the wild-type transporter protein and of the mutants were used to investigate the effect of the structural changes on the expression and subcellular targeting of the transporter proteins. Mutants derived from deletions showed reduced protein expression and in immunofluorescence showed a diffuse staining throughout the cytoplasm in transiently transfected cells, while the translation product derived from the point-mutated cDNA (G189E) was expressed at the level of the wild-type transporter and co-localized with the Golgi marker alpha-mannosidase II. This mutation therefore seems to directly affect the transport activity. Site-directed mutagenesis was used to change glycine 189 into alanine, glutamine, and isoleucine, respectively. While the G189A mutant was able to complement CMP-sialic acid transport-deficient Chinese hamster ovary mutants, the exchange of glycine 189 into glutamine or isoleucine dramatically affected the transport activity of the CMP-sialic acid transporter.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003569 Cytidine Monophosphate N-Acetylneuraminic Acid A nucleoside monophosphate sugar which donates N-acetylneuraminic acid to the terminal sugar of a ganglioside or glycoprotein. CMP Acetylneuraminic Acid,CMP-N-Acetylneuraminic Acid,CMP-NANA,D-glycero-beta-D-galacto-2-Nonulopyranosonic acid, 5-(acetylamino)-3,5-dideoxy-, 2-(hydrogen 5'-cytidylate),CMP-Sialic Acid,Cytidine Monophosphate N Acetylneuraminic Acid,Acetylneuraminic Acid, CMP,CMP N Acetylneuraminic Acid,CMP Sialic Acid
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

M Eckhardt, and B Gotza, and R Gerardy-Schahn
October 2013, Chembiochem : a European journal of chemical biology,
M Eckhardt, and B Gotza, and R Gerardy-Schahn
July 1996, Proceedings of the National Academy of Sciences of the United States of America,
M Eckhardt, and B Gotza, and R Gerardy-Schahn
August 1997, European journal of biochemistry,
M Eckhardt, and B Gotza, and R Gerardy-Schahn
August 2008, Carbohydrate research,
M Eckhardt, and B Gotza, and R Gerardy-Schahn
December 2020, International journal of molecular sciences,
M Eckhardt, and B Gotza, and R Gerardy-Schahn
December 2009, Phytochemistry,
M Eckhardt, and B Gotza, and R Gerardy-Schahn
December 2016, Glycoconjugate journal,
M Eckhardt, and B Gotza, and R Gerardy-Schahn
November 2017, American journal of medical genetics. Part A,
Copied contents to your clipboard!