Osmotic regulation of MAP-kinase activities and gene expression in H4IIE rat hepatoma cells. 1998

S Wiese, and F Schliess, and D Häussinger
Department of Internal Medicine Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-Universität, Düsseldorf, Germany.

The effects of hypo- and hyper-osmotic shock on endogenous MAP-kinase activities and MKP-1 and c-jun mRNA levels were studied in H4IIE rat hepatoma cells. In presence of vanadate hypo-osmolarity stimulated a rapid and sustained activation of MAP-kinases (Erk-2, JNK-2 and p38). In the absence of vanadate a hypo-osmotic MAP-kinase response was not detectable. Hyper-osmolarity stimulated a delayed and transient MAP-kinase activation and vanadate was not required for its detection. Vanadate, however, amplified the hyper-osmotic MAP-kinase stimulation. c-jun and MKP-1 mRNA levels were maximal after 0.5-1 h of hypo-osmotic exposure and returned towards basal levels within 2 h, whereas the hyper-osmotic induction of c-jun and MKP-1 mRNA was delayed. Vanadate was not required for the aniso-osmotic effects on MKP-1 and c-jun mRNA levels. Whereas the hyper-osmolarity-induced c-jun mRNA accumulation returned towards basal levels within 8 h, MKP-1 mRNA was still highly expressed at this time point. The role of MAP-kinases for the induction of aniso-osmolarity-induced gene expression and the potential importance of MKP-1 for termination of aniso-osmotic MAP-kinase activation are discussed.

UI MeSH Term Description Entries
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014638 Vanadates Oxyvanadium ions in various states of oxidation. They act primarily as ion transport inhibitors due to their inhibition of Na(+)-, K(+)-, and Ca(+)-ATPase transport systems. They also have insulin-like action, positive inotropic action on cardiac ventricular muscle, and other metabolic effects. Decavanadate,Metavanadate,Orthovanadate,Oxyvanadium,Vanadyl,Monovanadate,Sodium Vanadate,Vanadate,Vanadate, Sodium
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S Wiese, and F Schliess, and D Häussinger
January 2005, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
S Wiese, and F Schliess, and D Häussinger
October 2005, FEBS letters,
S Wiese, and F Schliess, and D Häussinger
April 2007, American journal of physiology. Gastrointestinal and liver physiology,
S Wiese, and F Schliess, and D Häussinger
June 1999, FEBS letters,
S Wiese, and F Schliess, and D Häussinger
June 2010, Biomedical research (Tokyo, Japan),
S Wiese, and F Schliess, and D Häussinger
January 2008, International journal of clinical and experimental medicine,
S Wiese, and F Schliess, and D Häussinger
January 2002, Journal of receptor and signal transduction research,
S Wiese, and F Schliess, and D Häussinger
November 1989, Archives of biochemistry and biophysics,
Copied contents to your clipboard!