Vesicular neurotransmitter transport and the presynaptic regulation of quantal size. 1998

R J Reimer, and E A Fon, and R H Edwards
Department of Neurology, UCSF School of Medicine 94143-0435, USA.

Specific transport activities package classical neurotransmitters into secretory vesicles for release by regulated exocytosis, but the proteins responsible for the vesicular transport of neurotransmitters are still being identified. One family of proteins includes vesicular transporters for monoamines and acetylcholine. Genetic manipulation in cells and in mice now shows that changes in the expression of these proteins can alter the amount of neurotransmitter stored per synaptic vesicle, the amount released and behavior. Although the mechanisms responsible for regulating these transporters in vivo remains unknown, recent work has demonstrated the potential for regulation by changes in intrinsic activity and in location. In addition, a recently identified vesicular transporter for GABA defines a novel family of proteins that mediates the packaging of amino acid neurotransmitters.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017729 Presynaptic Terminals The distal terminations of axons which are specialized for the release of neurotransmitters. Also included are varicosities along the course of axons which have similar specializations and also release transmitters. Presynaptic terminals in both the central and peripheral nervous systems are included. Axon Terminals,Nerve Endings, Presynaptic,Synaptic Boutons,Synaptic Terminals,Axon Terminal,Bouton, Synaptic,Boutons, Synaptic,Ending, Presynaptic Nerve,Endings, Presynaptic Nerve,Nerve Ending, Presynaptic,Presynaptic Nerve Ending,Presynaptic Nerve Endings,Presynaptic Terminal,Synaptic Bouton,Synaptic Terminal,Terminal, Axon,Terminal, Presynaptic,Terminal, Synaptic,Terminals, Axon,Terminals, Presynaptic,Terminals, Synaptic
D050492 Vesicular Biogenic Amine Transport Proteins Integral membrane proteins of the LIPID BILAYER of SECRETORY VESICLES that catalyze transport and storage of biogenic amine NEUROTRANSMITTERS such as ACETYLCHOLINE; SEROTONIN; MELATONIN; HISTAMINE; and CATECHOLAMINES. The transporters exchange vesicular protons for cytoplasmic neurotransmitters. Biogenic Amine Transporters, Vesicular,Vesicular Amine Transporter Proteins,Vesicular Amine Transport Proteins,Vesicular Amine Transporter,Vesicular Biogenic Amine Transporters,Amine Transporter, Vesicular
D050494 Vesicular Acetylcholine Transport Proteins Vesicular amine transporter proteins that transport the neurotransmitter ACETYLCHOLINE into small SECRETORY VESICLES. Proteins of this family contain 12 transmembrane domains and exchange vesicular PROTONS for cytoplasmic acetylcholine. Acetylcholine Transporters, Vesicular,Vesicular Acetylcholine Transporter Proteins,VAChT Proteins,Vesicular Acetylcholine Transporter,Acetylcholine Transporter, Vesicular,Transporter, Vesicular Acetylcholine,Transporters, Vesicular Acetylcholine,Vesicular Acetylcholine Transporters

Related Publications

R J Reimer, and E A Fon, and R H Edwards
August 2011, Nature neuroscience,
R J Reimer, and E A Fon, and R H Edwards
June 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R J Reimer, and E A Fon, and R H Edwards
January 2000, Reviews in the neurosciences,
R J Reimer, and E A Fon, and R H Edwards
September 2007, Neuron,
R J Reimer, and E A Fon, and R H Edwards
June 2011, Biochemistry,
R J Reimer, and E A Fon, and R H Edwards
January 2016, Frontiers in synaptic neuroscience,
R J Reimer, and E A Fon, and R H Edwards
January 2018, Pflugers Archiv : European journal of physiology,
R J Reimer, and E A Fon, and R H Edwards
January 1991, Progress in neurobiology,
R J Reimer, and E A Fon, and R H Edwards
January 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R J Reimer, and E A Fon, and R H Edwards
January 2003, Reviews of physiology, biochemistry and pharmacology,
Copied contents to your clipboard!