Modulation of secretin release by neuropeptides in secretin-producing cells. 1998

C H Chang, and W Y Chey, and B Erway, and D H Coy, and T M Chang
The Konar Center for Digestive and Liver Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.

Nerve fibers containing bombesin (BB)/gastrin-releasing polypeptide (GRP), pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), or galanin are known to innervate the mucosa of the upper small intestine. Both BB/GRP and PACAP have been shown to elicit secretin secretion in vivo. We studied whether the above-mentioned neuropeptides can act directly on secretin-producing cells, including the murine neuroendocrine cell line STC-1 and a secretin cell-enriched preparation isolated from rat upper small intestinal mucosa. Secretin release from both cell types was stimulated by various agents known to elicit secretin release and by the neuropeptides BB, GRP, and PACAP, suggesting a comparable response between the two cell preparations. The effects of neuropeptides were further studied in STC-1 cells. BB, GRP, and PACAP stimulated secretin release time and concentration dependently. VIP also stimulated secretin release concentration dependently. Stimulation by BB/GRP or PACAP was accompanied by elevation of inositol-1,4,5-trisphosphate (IP3) or cAMP, respectively. The stimulatory effect of PACAP on secretin release was synergistically enhanced by BB without any synergistic increase in IP3 or cAMP production, suggesting cross talk between different signal transduction pathways downstream of the production of these two second messengers. The L-type Ca2+ channel blocker diltiazem (10 microM) and the Ca2+ chelator EGTA (1 mM) significantly inhibited BB-stimulated secretin release by 64% and 59%, respectively, and inhibited PACAP-stimulated release by 75% and 55%, respectively. The protein kinase A-specific inhibitor Rp-cAMPS (100 microM) also inhibited both BB- and PACAP-stimulated secretin release by 30% and 62%, respectively. Galanin inhibited BB- and PACAP-stimulated secretin release and production of second messengers in a concentration-dependent and pertussis toxin-sensitive manner. These results suggested that the neuropeptides BB/GRP, PACAP, VIP, and galanin can modulate secretin release in secretin-producing cells and that STC-1 cells can serve as a useful model for studying the cellular mechanism of secretin secretion elicited by luminal secretagogues and neuropeptides.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008297 Male Males
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D001839 Bombesin A tetradecapeptide originally obtained from the skins of toads Bombina bombina and B. variegata. It is also an endogenous neurotransmitter in many animals including mammals. Bombesin affects vascular and other smooth muscle, gastric secretion, and renal circulation and function. Bombesin 14,Bombesin Dihydrochloride,Dihydrochloride, Bombesin
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004110 Diltiazem A benzothiazepine derivative with vasodilating action due to its antagonism of the actions of CALCIUM ion on membrane functions. Aldizem,CRD-401,Cardil,Cardizem,Dilacor,Dilacor XR,Dilren,Diltiazem Hydrochloride,Diltiazem Malate,Dilzem,Tiazac,CRD 401,CRD401
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA

Related Publications

C H Chang, and W Y Chey, and B Erway, and D H Coy, and T M Chang
December 1989, Molecular pharmacology,
C H Chang, and W Y Chey, and B Erway, and D H Coy, and T M Chang
November 1989, Gastroenterology,
C H Chang, and W Y Chey, and B Erway, and D H Coy, and T M Chang
December 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C H Chang, and W Y Chey, and B Erway, and D H Coy, and T M Chang
January 1983, Postepy higieny i medycyny doswiadczalnej,
C H Chang, and W Y Chey, and B Erway, and D H Coy, and T M Chang
June 1990, Brain research,
C H Chang, and W Y Chey, and B Erway, and D H Coy, and T M Chang
July 1995, Canadian journal of physiology and pharmacology,
C H Chang, and W Y Chey, and B Erway, and D H Coy, and T M Chang
April 1991, Journal of neuroimmunology,
C H Chang, and W Y Chey, and B Erway, and D H Coy, and T M Chang
August 1985, Journal of immunology (Baltimore, Md. : 1950),
C H Chang, and W Y Chey, and B Erway, and D H Coy, and T M Chang
January 1991, Acta oncologica (Stockholm, Sweden),
C H Chang, and W Y Chey, and B Erway, and D H Coy, and T M Chang
December 1988, Regulatory peptides,
Copied contents to your clipboard!