ATP-sensitive K+ channel blocker glibenclamide and diaphragm fatigue during normoxia and hypoxia. 1998

E Van Lunteren, and M Moyer, and A Torres
Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA. exv4@po.cwru.edu

The role of ATP-sensitive K+ channels in skeletal muscle contractile performance is controversial: blockers of these channels have been found to not alter, accelerate, or attenuate fatigue. The present study reexamined whether glibenclamide affects contractile performance during repetitive contraction. Experiments systematically assessed the effects of stimulation paradigm, temperature, and presence of hypoxia and in addition compared intertrain with intratrain fatigue. Adult rat diaphragm muscle strips were studied in vitro. At 37 degrees C and normoxia, glibenclamide did not significantly affect any measure of fatigue during continuous 5- or 100-Hz or intermittent 20-Hz stimulation but progressively prolonged relaxation time during 20-Hz stimulation. At 20 degrees C and normoxia, neither force nor relaxation rate was affected significantly by glibenclamide during 20-Hz stimulation. At 37 degrees C and hypoxia, glibenclamide did not significantly affect fatigue at 5-Hz or intertrain fatigue during 20-Hz stimulation but reduced intratrain fatigue and prolonged relaxation time during 20-Hz stimulation. These findings indicate that, although ATP-sensitive K+ channels may be activated during repetitive contraction, their activation has only a modest effect on the rate of fatigue development.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E Van Lunteren, and M Moyer, and A Torres
August 1995, Circulation research,
E Van Lunteren, and M Moyer, and A Torres
October 1993, Circulation research,
E Van Lunteren, and M Moyer, and A Torres
January 1996, Veterinary research communications,
E Van Lunteren, and M Moyer, and A Torres
January 1997, Polish journal of pharmacology,
E Van Lunteren, and M Moyer, and A Torres
March 1994, The Journal of physiology,
E Van Lunteren, and M Moyer, and A Torres
July 2005, Annals of noninvasive electrocardiology : the official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc,
E Van Lunteren, and M Moyer, and A Torres
May 2005, Kidney international,
E Van Lunteren, and M Moyer, and A Torres
July 2002, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!