Spontaneous transient outward currents and delayed rectifier K+ current: effects of hypoxia. 1998

C Vandier, and M Delpech, and P Bonnet
Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique 6542, Physiologie des Cellules Cardiaques et Vasculaires, Faculté des Sciences, 37200 Tours Cedex, France.

Single smooth muscle cells of rabbit intrapulmonary artery were voltage clamped using the perforated-patch configuration of the patch-clamp technique. We observed spontaneous transient outward currents (STOCs) and a steady-state outward current. Because STOCs were tetraethylammonium sensitive and activated by Ca2+ influx, they were believed to represent activation of Ca2+-activated K+ channels. The steady-state outward current, which was sensitive to 4-aminopyridine, was the delayed rectifier K+ current. In cells voltage clamped at 0 mV, we found that STOCs were not randomly distributed in amplitude but were composed of multiples of 1.57 +/- 0.56 pA/pF. The mean frequency of STOCs was 5.51 +/- 3.49 Hz. Ryanodine (10 microM), caffeine (5 mM), thapsigargin (200 nM), and hypoxia (PO2 = 10 mmHg) decreased STOCs. The effect of hypoxia on STOCs was partially reversible only if the experiment was conducted in the presence of thapsigargin. Hypoxia and thapsigargin decrease steady-state outward current. Thapsigargin and removal of external Ca2+ abolished the effect of hypoxia, suggesting that hypoxia decreases steady-state outward current by a Ca2+-dependent mechanism.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Vandier, and M Delpech, and P Bonnet
March 2001, Acta pharmacologica Sinica,
C Vandier, and M Delpech, and P Bonnet
July 2003, European journal of pharmacology,
C Vandier, and M Delpech, and P Bonnet
August 2003, Sheng li xue bao : [Acta physiologica Sinica],
C Vandier, and M Delpech, and P Bonnet
February 1991, The American journal of physiology,
C Vandier, and M Delpech, and P Bonnet
April 2004, Journal of molecular and cellular cardiology,
C Vandier, and M Delpech, and P Bonnet
June 1996, The American journal of physiology,
Copied contents to your clipboard!