Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation. 1998

R Chen, and E I Walter, and G Parker, and J P Lapurga, and J L Millan, and Y Ikehara, and S Udenfriend, and M E Medof
Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, 44106, USA.

The glycophosphatidylinositol (GPI) anchors of proteins expressed on human erythrocytes and nucleated cells differ with respect to acylation of an inositol hydroxyl group, a structural feature that modulates their cleavability by PI-specific phospholipase C (PI-PLC). To determine how this GPI anchor modification is regulated, the precursor and protein-associated GPIs in two K562 cell transfectants (ATCC and .48) exhibiting alternatively PI-PLC-sensitive and resistant surface proteins were analyzed and the temporal relationship between GPI protein transfer and acquisition of PI-PLC sensitivity was determined. Nondenaturing PAGE analyses demonstrated that, whereas in .48 transfectants the GPI anchors in decay accelerating factor (DAF) and placental alkaline phosphatase (PLAP) were >95% acylated, in ATCC transfectants, they were 60 and 33% unsubstituted, respectively. In contrast, TLC analyses revealed that putative GPI donors in the two lines were identical and were >/=95% acylated. Studies of de novo DAF biosynthesis in HeLa cells bearing proteins with >90% unacylated anchors showed that within 5 min at 37 degreesC (or at 18 degreesC, which does not permit endoplasmic reticilum exit), >50% of the anchor in nascent 44-kDa proDAF protein exhibited PI-PLC sensitivity. In vitro analyses of the microsomal processing of miniPLAP, a truncated PLAP reporter protein, demonstrated that the anchor donor initially transferred to prominiPLAP was acylated and then progressively was deacylated. These findings indicate that (i) the anchor moiety that initially transfers to nascent proteins is acylated, (ii) inositol acylation in mature surface proteins is regulated via posttransfer deacylation, which in general is cell-specific but also can be protein-dependent, and (iii) deacylation occurs in the endoplasmic reticulum immediately after GPI transfer.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000215 Acylation The addition of an organic acid radical into a molecule.
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D017261 Glycosylphosphatidylinositols Compounds containing carbohydrate or glycosyl groups linked to phosphatidylinositols. They anchor GPI-LINKED PROTEINS or polysaccharides to cell membranes. GPI Membrane Anchor,GPI Membrane Anchors,Glycosyl-Phosphatidylinositol Membrane Protein Anchor,Glycosylated Phosphatidylinositol,Glycosylphosphatidylinositol Anchor,Glycosylphosphatidylinositol Anchors,Phosphatidylinositol Glycan,Gly-PtdIns,Glycoinositol Phospholipid Membrane Anchor,Glycosyl-Phosphatidylinositol,Glycosyl-Phosphatidylinositol Membrane Protein Anchors,Glycosylated Phosphatidylinositols,Glycosylphosphatidylinositol,Glycosylphosphatidylinositol Linkage,PI-Glycan,Anchor, GPI Membrane,Anchor, Glycosylphosphatidylinositol,Anchors, GPI Membrane,Anchors, Glycosylphosphatidylinositol,Glycan, Phosphatidylinositol,Glycosyl Phosphatidylinositol,Glycosyl Phosphatidylinositol Membrane Protein Anchor,Glycosyl Phosphatidylinositol Membrane Protein Anchors,Linkage, Glycosylphosphatidylinositol,Membrane Anchor, GPI,Membrane Anchors, GPI,PI Glycan,Phosphatidylinositol, Glycosylated,Phosphatidylinositols, Glycosylated

Related Publications

R Chen, and E I Walter, and G Parker, and J P Lapurga, and J L Millan, and Y Ikehara, and S Udenfriend, and M E Medof
January 2018, Biomarker insights,
R Chen, and E I Walter, and G Parker, and J P Lapurga, and J L Millan, and Y Ikehara, and S Udenfriend, and M E Medof
October 1991, The Journal of cell biology,
R Chen, and E I Walter, and G Parker, and J P Lapurga, and J L Millan, and Y Ikehara, and S Udenfriend, and M E Medof
October 2007, Journal of biomolecular structure & dynamics,
R Chen, and E I Walter, and G Parker, and J P Lapurga, and J L Millan, and Y Ikehara, and S Udenfriend, and M E Medof
December 1991, The Journal of cell biology,
R Chen, and E I Walter, and G Parker, and J P Lapurga, and J L Millan, and Y Ikehara, and S Udenfriend, and M E Medof
February 1995, Journal of cell science,
R Chen, and E I Walter, and G Parker, and J P Lapurga, and J L Millan, and Y Ikehara, and S Udenfriend, and M E Medof
November 1992, The Journal of cell biology,
R Chen, and E I Walter, and G Parker, and J P Lapurga, and J L Millan, and Y Ikehara, and S Udenfriend, and M E Medof
April 2004, The Journal of biological chemistry,
R Chen, and E I Walter, and G Parker, and J P Lapurga, and J L Millan, and Y Ikehara, and S Udenfriend, and M E Medof
October 1989, The American journal of physiology,
R Chen, and E I Walter, and G Parker, and J P Lapurga, and J L Millan, and Y Ikehara, and S Udenfriend, and M E Medof
April 2003, BioEssays : news and reviews in molecular, cellular and developmental biology,
R Chen, and E I Walter, and G Parker, and J P Lapurga, and J L Millan, and Y Ikehara, and S Udenfriend, and M E Medof
June 1988, Molecular and biochemical parasitology,
Copied contents to your clipboard!