Electrophysiological evidence for putative subtypes of neurotensin receptors in guinea-pig mesencephalic dopaminergic neurons. 1998

E Nalivaiko, and J C Michaud, and P Soubrié, and G Le Fur
Sanofi Recherche, Montpellier, France.

Electrophysiologically identified mesencephalic dopaminergic neurons were examined by means of extra- and intracellular microelectrodes in coronal slices of guinea-pig brain. Neurotensin and its C-terminal fragment (8-13) were equipotent in the enhancement of spontaneous neuronal firing rate (EC50 values 81.9 and 72.6nM, respectively). The duration of response was significantly longer and more variable for neurotensin compared to neurotensin fragment (8-13) (mean half-time of recovery 423+/-44 and 100+/-14 s, respectively, for peptides applied at 300 nM). The initial fast phase of excitatory responses to neurotensin receptor agonists was associated with membrane depolarization (when assessed in current-clamp mode) or with inward currents (when assessed in voltage-clamp mode), whereas prolonged excitation was associated with a slowly occurring and long-lasting change in the late afterhyperpolarization. Two kinetically distinct components were revealed in responses to neurotensin and neurotensin fragment (8-13) by the use of SR48692 and SR142948, two selective non-peptide neurotensin receptor antagonists. SR142948 (100 nM) potently antagonized responses to both agonists [response was reduced by 661 5% and 74+/-9% for neurotensin and neurotensin fragment (8-13), respectively] and caused a rightward shift in the concentration-response curve for neurotensin. On the other hand, SR48692 (100 nM) selectively inhibited the slow (late afterhyperpolarization-dependent) component, without altering the response amplitude; the half-time of recovery was reduced by 71+/-6% and 65+/-5% of control values for responses induced by neurotensin (300 nM) and neurotensin fragment (8-13) (300 nM), respectively. In addition, neurotensin, but not neurotensin fragment (8-13), provoked SR48692-sensitive and long-lasting attenuation of dopamine-induced inhibitory responses. It is suggested that two subtypes of neurotensin receptors are present in dopaminergic neurons, based on the differences in agonist and antagonist sensitivity, kinetic properties and the membrane mechanisms involved.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009496 Neurotensin A biologically active tridecapeptide isolated from the hypothalamus. It has been shown to induce hypotension in the rat, to stimulate contraction of guinea pig ileum and rat uterus, and to cause relaxation of rat duodenum. There is also evidence that it acts as both a peripheral and a central nervous system neurotransmitter.
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011720 Pyrazoles Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions.
D011804 Quinolines

Related Publications

E Nalivaiko, and J C Michaud, and P Soubrié, and G Le Fur
April 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E Nalivaiko, and J C Michaud, and P Soubrié, and G Le Fur
April 1993, Neuroscience letters,
E Nalivaiko, and J C Michaud, and P Soubrié, and G Le Fur
January 2011, Frontiers in systems neuroscience,
E Nalivaiko, and J C Michaud, and P Soubrié, and G Le Fur
December 1983, Veterinary research communications,
E Nalivaiko, and J C Michaud, and P Soubrié, and G Le Fur
February 1991, Hearing research,
E Nalivaiko, and J C Michaud, and P Soubrié, and G Le Fur
July 1984, European journal of pharmacology,
E Nalivaiko, and J C Michaud, and P Soubrié, and G Le Fur
September 1982, Life sciences,
E Nalivaiko, and J C Michaud, and P Soubrié, and G Le Fur
May 1991, European journal of pharmacology,
E Nalivaiko, and J C Michaud, and P Soubrié, and G Le Fur
April 1994, European journal of pharmacology,
E Nalivaiko, and J C Michaud, and P Soubrié, and G Le Fur
November 1985, Brain research,
Copied contents to your clipboard!