Chronotropic, inotropic and lusitropic effects of capsaicin on isolated rat atria. 1998

A Gomez Alvis, and P Quiroga, and A Rebolledo, and V Milesi, and E Mandrile, and A Grassi
College of Pharmaceuticals of the Provincia of Buenos Aries, Argentina.

This work includes results on chronotropic, inotropic and lusitropic changes induced by capsaicin on isolated rat atria. As regards spontaneous frequency, it was stimulated from 10(-9) M up to 7 x 10(-7) M of capsaicin. A simultaneous depression in developed force (F) showed a significant correlation with this positive chronotropic effect up to 7 x 10(-8) M of capsaicin, which is the result of the negative staircase phenomenon in the rat heart. The correlation was lost at 2 and 7 x 10(-7) M of capsaicin since in spite of the sustained increase in atrial rate the decrease in F was reversed and then depressed again at 2 and 7 x 10(-6) M of capsaicin without changes in frequency. A concentration of capsaicin that overcome the negative staircase phenomenon, 5 x 10(-7) M, was tested as unique dose resulting in stimulation of the chronotropic, inotropic and lusitropic states of the atria. Percentual differences with respect to control values were maximal after 1-3 minutes for frequency (10 +/- 3%), F (29 +/- 4%), maximal velocity of force development (+F = 50 +/- 12%) (in all cases +F and -F bold indicates +F and -F, respectively), and maximal velocity of relaxation (-F = 64 +/- 13%); a positive lusitropic effect was significant after 8-10 minutes (+F/-F = 17 +/- 7%). Capsaicin did not affect the rat atria in the presence of 10(-6) M of ruthenium red, a blocker of capsaicin activation of sensory nerves, indicating that the stimulatory effects were entirely mediated by the release of neurotransmitters and that this concentration of capsaicin was not deleterous "per se". Capsaicin elicited similar inotropic responses in electrically driven isolated atria (+F = 41 +/- 9%) but the positive lusitropic effect was lost suggesting that capsaicin-induced increases in -F are limited at a frequency higher than the spontaneous frequency (11 +/- 6 vs. 32 +/- 4%, respectively). 10(-6) M of CGRP8-37, an antagonist of CGRP1 receptors, suppress the stimulatory effects of capsaicin on atrial contraction. In summary, atrial rate as compared to atrial contraction is more sensitive to the neurotransmitter released by capsaicin, which results in mechanical effects expressing the negative staircase phenomenon in the rat at low concentrations of capsaicin. The positive chronotropic, inotropic and lusitropic responses elicited by capsaicin are mediated by the release of neurotransmitters from sensory fibbers and no deletereous effects of capsaicin "per se" became evident when the release of neuropeptides was prevented. Atrial contraction was depressed at higher capsaicin concentrations than the one showing stimulatory effects. Stimulation of atrial contractility is mediated by activation of CGRP receptors.

UI MeSH Term Description Entries
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012430 Ruthenium Red An inorganic dye used in microscopy for differential staining and as a diagnostic reagent. In research this compound is used to study changes in cytoplasmic concentrations of calcium. Ruthenium red inhibits calcium transport through membrane channels. Ammoniated Ruthenium Oxychloride,Oxychloride, Ammoniated Ruthenium,Red, Ruthenium,Ruthenium Oxychloride, Ammoniated
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018015 Receptors, Calcitonin Gene-Related Peptide Cell surface proteins that bind CALCITONIN GENE-RELATED PEPTIDE with high affinity and trigger intracellular changes which influence the behavior of cells. CGRP receptors are present in both the CENTRAL NERVOUS SYSTEM and the periphery. They are formed via the heterodimerization of the CALCITONIN RECEPTOR-LIKE PROTEIN and RECEPTOR ACTIVITY-MODIFYING PROTEIN 1. CGRP Receptors,Calcitonin Gene-Related Peptide Receptors,Receptors, CGRP,CGRP Receptor,Calcitonin-Gene Related Peptide Receptor,Calcitonin Gene Related Peptide Receptor,Calcitonin Gene Related Peptide Receptors,Receptors, Calcitonin Gene Related Peptide

Related Publications

A Gomez Alvis, and P Quiroga, and A Rebolledo, and V Milesi, and E Mandrile, and A Grassi
June 2017, Iranian journal of basic medical sciences,
A Gomez Alvis, and P Quiroga, and A Rebolledo, and V Milesi, and E Mandrile, and A Grassi
February 2002, Biological & pharmaceutical bulletin,
A Gomez Alvis, and P Quiroga, and A Rebolledo, and V Milesi, and E Mandrile, and A Grassi
January 1965, The Journal of pharmacology and experimental therapeutics,
A Gomez Alvis, and P Quiroga, and A Rebolledo, and V Milesi, and E Mandrile, and A Grassi
January 1989, Acta physiologica et pharmacologica latinoamericana : organo de la Asociacion Latinoamericana de Ciencias Fisiologicas y de la Asociacion Latinoamericana de Farmacologia,
A Gomez Alvis, and P Quiroga, and A Rebolledo, and V Milesi, and E Mandrile, and A Grassi
March 1992, British journal of pharmacology,
A Gomez Alvis, and P Quiroga, and A Rebolledo, and V Milesi, and E Mandrile, and A Grassi
April 1982, Japanese journal of pharmacology,
A Gomez Alvis, and P Quiroga, and A Rebolledo, and V Milesi, and E Mandrile, and A Grassi
January 1984, British journal of pharmacology,
A Gomez Alvis, and P Quiroga, and A Rebolledo, and V Milesi, and E Mandrile, and A Grassi
November 1991, Clinical and experimental pharmacology & physiology,
A Gomez Alvis, and P Quiroga, and A Rebolledo, and V Milesi, and E Mandrile, and A Grassi
February 1982, Archives internationales de pharmacodynamie et de therapie,
A Gomez Alvis, and P Quiroga, and A Rebolledo, and V Milesi, and E Mandrile, and A Grassi
November 1973, Prostaglandins,
Copied contents to your clipboard!