Functional region IV of glycoprotein D from herpes simplex virus modulates glycoprotein binding to the herpesvirus entry mediator. 1998

A H Rux, and S H Willis, and A V Nicola, and W Hou, and C Peng, and H Lou, and G H Cohen, and R J Eisenberg
Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ahrux@biochem.dental.upenn.edu

Glycoprotein D (gD) of herpes simplex virus (HSV) is essential for virus entry and has four functional regions (I to IV) important for this process. We previously showed that a truncated form of a functional region IV variant, gD1(Delta290-299t), had an enhanced ability to block virus entry and to bind to the herpesvirus entry mediator (HveAt; formerly HVEMt), a cellular receptor for HSV. To explore this phenotype further, we examined other forms of gD, especially ones with mutations in region IV. Variant proteins with deletions of amino acids between 277 and 300 (region IV), as well as truncated forms lacking C-terminal residues up to amino acid 275 of gD, were able to block HSV entry into Vero cells 1 to 2 logs better than wild-type gD1(306t). In contrast, gD truncated at residue 234 did not block virus entry into Vero cells. Using optical biosensor technology, we recently showed that gD1(Delta290-299t) had a 100-fold-higher affinity for HveAt than gD1(306t) (3.3 x 10(-8) M versus 3.2 x 10(-6) M). Here we found that the affinities of other region IV variants for HveAt were similar to that of gD1(Delta290-299t). Thus, the affinity data follow the same hierarchy as the blocking data. In each case, the higher affinity was due primarily to a faster kon rather than to a slower koff. Therefore, once the gDt-HveAt complex formed, its stability was unaffected by mutations in or near region IV. gD truncated at residue 234 bound to HveAt with a lower affinity (2.0 x 10(-5) M) than did gD1(306t) due to a more rapid koff. These data suggest that residues between 234 and 275 are important for maintaining stability of the gDt-HveAt complex and that functional region IV is important for modulating the binding of gD to HveA. The binding properties of any gD1(234t)-receptor complex could account for the inability of this form of gDt to block HSV infection.

UI MeSH Term Description Entries
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000956 Antigens, Viral Substances elaborated by viruses that have antigenic activity. Viral Antigen,Viral Antigens,Antigen, Viral
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

A H Rux, and S H Willis, and A V Nicola, and W Hou, and C Peng, and H Lou, and G H Cohen, and R J Eisenberg
November 2002, Journal of virology,
A H Rux, and S H Willis, and A V Nicola, and W Hou, and C Peng, and H Lou, and G H Cohen, and R J Eisenberg
November 2010, Journal of virology,
A H Rux, and S H Willis, and A V Nicola, and W Hou, and C Peng, and H Lou, and G H Cohen, and R J Eisenberg
December 2000, Journal of virology,
A H Rux, and S H Willis, and A V Nicola, and W Hou, and C Peng, and H Lou, and G H Cohen, and R J Eisenberg
September 1998, Journal of virology,
A H Rux, and S H Willis, and A V Nicola, and W Hou, and C Peng, and H Lou, and G H Cohen, and R J Eisenberg
May 2020, mBio,
A H Rux, and S H Willis, and A V Nicola, and W Hou, and C Peng, and H Lou, and G H Cohen, and R J Eisenberg
July 2020, Journal of virology,
A H Rux, and S H Willis, and A V Nicola, and W Hou, and C Peng, and H Lou, and G H Cohen, and R J Eisenberg
August 2007, The Journal of general virology,
A H Rux, and S H Willis, and A V Nicola, and W Hou, and C Peng, and H Lou, and G H Cohen, and R J Eisenberg
January 1992, Advances in experimental medicine and biology,
A H Rux, and S H Willis, and A V Nicola, and W Hou, and C Peng, and H Lou, and G H Cohen, and R J Eisenberg
December 2000, Journal of virology,
A H Rux, and S H Willis, and A V Nicola, and W Hou, and C Peng, and H Lou, and G H Cohen, and R J Eisenberg
July 1998, Journal of virology,
Copied contents to your clipboard!