High-frequency transitions in cortical spike trains related to short-term memory. 1998

M Bodner, and Y D Zhou, and J M Fuster
Department of Psychiatry, School of Medicine, University of California, Los Angeles, USA.

Single-unit spike trains recorded from parietal cortex of monkeys performing a tactile short-term memory task show characteristic fluctuations (transitions) in their firing frequency that are related to memory. Spike trains recorded during the memory period, when the animal must retain information for the short term, show a higher rate of such transitions than spike trains recorded during intertrial baseline periods. In the present study, an analysis of multiple temporal resolutions over which these transitions are observed reveals that the memory-related transitions occur most prominently in the 25-50 Hz range. The results of this study suggest that, in the monkey, high frequency fluctuations of neuronal discharge in the parietal cortex are correlated with haptic short-term memory. The presence of such fluctuations are also consistent with theoretical models of short-term memory.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D008570 Memory, Short-Term Remembrance of information for a few seconds to hours. Immediate Recall,Memory, Immediate,Working Memory,Memory, Shortterm,Immediate Memories,Immediate Memory,Immediate Recalls,Memories, Immediate,Memories, Short-Term,Memories, Shortterm,Memory, Short Term,Recall, Immediate,Recalls, Immediate,Short-Term Memories,Short-Term Memory,Shortterm Memories,Shortterm Memory,Working Memories
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

M Bodner, and Y D Zhou, and J M Fuster
February 2013, Journal of sleep research,
M Bodner, and Y D Zhou, and J M Fuster
June 1993, Neuroscience research,
M Bodner, and Y D Zhou, and J M Fuster
April 2008, Journal of neuroscience methods,
M Bodner, and Y D Zhou, and J M Fuster
June 2018, PLoS computational biology,
M Bodner, and Y D Zhou, and J M Fuster
December 2006, Neural computation,
M Bodner, and Y D Zhou, and J M Fuster
August 2020, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
M Bodner, and Y D Zhou, and J M Fuster
November 2000, Cerebral cortex (New York, N.Y. : 1991),
M Bodner, and Y D Zhou, and J M Fuster
December 2000, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
M Bodner, and Y D Zhou, and J M Fuster
December 1986, Proceedings of the National Academy of Sciences of the United States of America,
M Bodner, and Y D Zhou, and J M Fuster
August 1971, Science (New York, N.Y.),
Copied contents to your clipboard!