Opposite change of in vivo dopamine release in the rat nucleus accumbens and striatum that follows electrical stimulation of dorsal raphe nucleus: role of 5-HT3 receptors. 1998

P De Deurwaerdère, and L Stinus, and U Spampinato
Institut National de la Santé et de la Recherche Médicale Unité 259, Unité Mixte de Recherche-Centre National de la Recherche Scientifique 5541, Université Victor Ségalen Bordeaux 2, 33077 Bordeaux Cedex, France.

In the present study we investigate, using in vivo microdialysis, the involvement of central 5-HT3 receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3, 4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindole-3-acetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens and the striatum of halothane-anesthetized rats. DRN stimulation (300 microA, 1 msec at 3, 5, 10, and 20 Hz for 15 min) induced a frequency-dependent increase of accumbal DA release and a concomitant reduction of DA release in the ipsilateral striatum at 20 Hz. In both structures DOPAC and 5-HIAA dialysate contents were enhanced in a frequency-dependent manner. Central serotonin (5-HT) depletion, induced by intra-raphe injections of 5, 7-dihydroxytryptamine neurotoxin, abolished the effect of 20 Hz DRN stimulation on DA, DOPAC, and 5-HIAA extracellular levels in both regions. The 5-HT synthesis inhibitor para-chlorophenylalanine (3 x 400 mg/kg, i.p., for 3 d), although preventing the effect on DA release, failed to modify significantly the effect of 20 Hz DRN stimulation on DOPAC and 5-HIAA outflow in both structures. Ondansetron (0.1 and 1 mg/kg) and (S)-zacopride (0.1 mg/kg), two 5-HT3 antagonists, significantly impaired the increase of accumbal DA release induced by 20 Hz DRN stimulation but did not affect either the decrease of striatal DA release or the increase in DOPAC outflow in both structures. These results indicate that an enhancement of central 5-HT transmission induced by DRN stimulation differentially affects striatal and accumbal DA release and that endogenous 5-HT, via its action on 5-HT3 receptors, exerts a facilitatory control restricted to the mesoaccumbal DA pathway.

UI MeSH Term Description Entries
D008297 Male Males
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D010134 Fenclonine A selective and irreversible inhibitor of tryptophan hydroxylase, a rate-limiting enzyme in the biosynthesis of serotonin (5-HYDROXYTRYPTAMINE). Fenclonine acts pharmacologically to deplete endogenous levels of serotonin. p-Chlorophenylalanine,para-Chlorophenylalanine,CP-10,188,DL-3-(4-Chlorophenyl)alanine,Fenclonin,Fenclonine (L)-Isomer,Fenclonine Hydrobromide,Fenclonine Hydrochloride,Fenclonine, (D)-Isomer,Hydrobromide, Fenclonine,Hydrochloride, Fenclonine,para Chlorophenylalanine
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006897 Hydroxyindoleacetic Acid 5-HIAA,5-Hydroxy-3-Indoleacetic Acid,5-Hydroxyindolamine Acetic Acid,5 Hydroxy 3 Indoleacetic Acid,5 Hydroxyindolamine Acetic Acid,Acetic Acid, 5-Hydroxyindolamine,Acid, 5-Hydroxy-3-Indoleacetic,Acid, 5-Hydroxyindolamine Acetic,Acid, Hydroxyindoleacetic

Related Publications

P De Deurwaerdère, and L Stinus, and U Spampinato
May 1992, Neurochemical research,
P De Deurwaerdère, and L Stinus, and U Spampinato
June 1989, Neuroscience letters,
P De Deurwaerdère, and L Stinus, and U Spampinato
January 2021, Journal of chemical neuroanatomy,
P De Deurwaerdère, and L Stinus, and U Spampinato
July 1991, British journal of pharmacology,
P De Deurwaerdère, and L Stinus, and U Spampinato
March 1991, Brain research,
P De Deurwaerdère, and L Stinus, and U Spampinato
January 1987, Alcohol and drug research,
P De Deurwaerdère, and L Stinus, and U Spampinato
January 1997, Journal of neurochemistry,
P De Deurwaerdère, and L Stinus, and U Spampinato
April 1999, Neuroscience letters,
P De Deurwaerdère, and L Stinus, and U Spampinato
September 1995, British journal of pharmacology,
P De Deurwaerdère, and L Stinus, and U Spampinato
February 1997, Brain research,
Copied contents to your clipboard!