Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein. 1998

A J Hannan, and P Gunning, and P L Jeffrey, and R P Weinberger
Developmental Neurobiology Unit, Children's Medical Research Institute, Westmead, NSW, Australia.

The microfilament system is thought to be a crucial cytoskeletal component regulating development and mature function of neurons. The intracellular distribution of the microfilament isoform components, actin and tropomyosin (Tm), in neurons primarily in vivo, has been investigated at both the mRNA and the protein level using isoform specific riboprobes and antibodies. Our in vivo and in vitro studies have identified at least six neuronal compartments based on microfilament isoform mRNA localization: the developing soma, the mature soma, growth cone, developing axon hillock/proximal axon, mature somatodendritic and mature axonal pole soma. Protein localization patterns revealed that the isoforms were frequently distributed over a wider area than their respective mRNAs, suggesting that isoform specific patterns of mRNA targeting may influence, but do not absolutely determine, microfilament isoform location. Tm4 and Tm5 showed identical mRNA targeting in the developing neuron but distinct protein localization patterns. We suggest that in this instance mRNA location may best be viewed as a regulated site of synthesis and assembly, rather than a regulator of protein localization per se. In addition, Tm5 and beta-actin mRNA and protein locations were developmentally regulated, suggesting the possibility that environmental signals modulate targeting of specific mRNAs and their proteins. Thus, developmentally regulated mRNA localization and positional translation may act in concert with protein transport to regulate neuronal microfilament composition and consequently neuronal structure.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion

Related Publications

A J Hannan, and P Gunning, and P L Jeffrey, and R P Weinberger
January 1995, The European journal of neuroscience,
A J Hannan, and P Gunning, and P L Jeffrey, and R P Weinberger
January 1994, Brain research,
A J Hannan, and P Gunning, and P L Jeffrey, and R P Weinberger
March 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
A J Hannan, and P Gunning, and P L Jeffrey, and R P Weinberger
October 2015, mBio,
A J Hannan, and P Gunning, and P L Jeffrey, and R P Weinberger
March 2017, Proceedings of the National Academy of Sciences of the United States of America,
A J Hannan, and P Gunning, and P L Jeffrey, and R P Weinberger
December 1997, Brain research. Molecular brain research,
A J Hannan, and P Gunning, and P L Jeffrey, and R P Weinberger
February 1998, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
A J Hannan, and P Gunning, and P L Jeffrey, and R P Weinberger
September 1993, The Journal of clinical investigation,
A J Hannan, and P Gunning, and P L Jeffrey, and R P Weinberger
September 1991, Neuron,
Copied contents to your clipboard!