Radiation-induced apoptosis mediated by retinoblastoma protein. 1998

C Bowen, and S Spiegel, and E P Gelmann
Department of Medicine, Lombardi Cancer Center, Georgetown University School of Medicine, Washington, DC 20007-2196, USA.

The role of the retinoblastoma gene product, RB, in transmitting the signals of apoptosis is unclear, but RB is considered to be antiapoptotic because RB mediates cell cycle arrest that also can interrupt intracellular signaling pathways leading to apoptosis. Gamma-radiation can cause apoptosis, the process of programmed cell death, via several mechanisms including DNA damage, ceramide production, and the generation of free radical oxygen species. We investigated the effect of RB on radiation-induced apoptosis by restoring normal RB expression in DU-145 prostate cancer cells that have one deleted and one truncated RB gene. DU-145 cells are highly resistant to apoptosis induced either by radiation or by the addition of ceramide. Two independently derived RB-positive DU-145 derivative cell lines underwent apoptosis after irradiation or exposure to the cell permeable C2-ceramide. Apoptosis in the RB-positive cell lines was not associated with major changes in the cell cycle response to irradiation. RB-mediated apoptosis occurred in the absence of expression of caspases 8, 6, 3, and 7 and without detectable cleavage of poly(ADP)ribose polymerase. However, a specific inhibitor of serine proteases, Na-p-Tosyl-L-lysyl-chloromethyl ketone, inhibited radiation-induced apoptosis in DU-145 cells expressing RB. Radiation-induced apoptosis was preceded by an increase in JUN protein expression and accompanied by activation of the stress-related JUN kinase. Our data show that RB is proapoptotic in DU-145 cells and acts upstream of JUN expression and JNK activation.

UI MeSH Term Description Entries
D008297 Male Males
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

C Bowen, and S Spiegel, and E P Gelmann
November 2002, The Journal of biological chemistry,
C Bowen, and S Spiegel, and E P Gelmann
February 1998, Biochemical and biophysical research communications,
C Bowen, and S Spiegel, and E P Gelmann
April 1996, Oncogene,
C Bowen, and S Spiegel, and E P Gelmann
January 2002, Neoplasia (New York, N.Y.),
C Bowen, and S Spiegel, and E P Gelmann
January 2000, Cancer letters,
C Bowen, and S Spiegel, and E P Gelmann
April 2005, The Journal of biological chemistry,
C Bowen, and S Spiegel, and E P Gelmann
March 2003, Zhonghua zhong liu za zhi [Chinese journal of oncology],
C Bowen, and S Spiegel, and E P Gelmann
March 1998, Cell biology and toxicology,
Copied contents to your clipboard!