Human 15-lipoxygenase gene promoter: analysis and identification of DNA binding sites for IL-13-induced regulatory factors in monocytes. 1998

U Kelavkar, and S Wang, and A Montero, and J Murtagh, and K Shah, and K Badr
Center for Glomerulonephritis, Renal Division Emory University, and Veterans Affairs Medical Center, Atlanta, GA 30033, USA.

In order to study the transcriptional control of 15-LO expression, we have cloned and sequenced the human 15-LO promoter region. The 15-LO promoter is associated with a CpG island at the 5'-end of the gene, and sequence analysis reveals putative Sp1 and Ap2 binding site/s and absence of TATA or CAAT motifs. Transcription is initiated at one major site. Using deletion constructs, we have defined an active promoter region of 1056 bp. Gel-shift assays revealed that transcriptional factor(s) induced only in response to IL-13 treatment of human peripheral blood monocytes bind to the 15-LO promoter DNA. Two regions, DP1 (-140 to -92 bp) and DP2 (-353 to -304 bp) of the promoter were essential for transcription in HeLa cells and human peripheral monocytes. Hela nuclear extracts contained a specific nuclear factor(s) binding to 15-LO promoter DNA which are distinct from those derived from IL-13-treated human peripheral monocyte nuclear extracts. In addition, fluorescent in situ hybridization (FISH) results refined the previous localization of 15-LO to human chromosome 17p13.3.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002886 Chromosomes, Human, Pair 17 A specific pair of GROUP E CHROMOSOMES of the human chromosome classification. Chromosome 17
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

U Kelavkar, and S Wang, and A Montero, and J Murtagh, and K Shah, and K Badr
November 1994, The Journal of biological chemistry,
U Kelavkar, and S Wang, and A Montero, and J Murtagh, and K Shah, and K Badr
November 1998, The Journal of biological chemistry,
U Kelavkar, and S Wang, and A Montero, and J Murtagh, and K Shah, and K Badr
April 2004, The Journal of biological chemistry,
U Kelavkar, and S Wang, and A Montero, and J Murtagh, and K Shah, and K Badr
September 2001, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology,
U Kelavkar, and S Wang, and A Montero, and J Murtagh, and K Shah, and K Badr
May 1995, The American journal of physiology,
U Kelavkar, and S Wang, and A Montero, and J Murtagh, and K Shah, and K Badr
January 2003, Journal of immunology (Baltimore, Md. : 1950),
U Kelavkar, and S Wang, and A Montero, and J Murtagh, and K Shah, and K Badr
October 2015, International journal of molecular sciences,
U Kelavkar, and S Wang, and A Montero, and J Murtagh, and K Shah, and K Badr
April 1999, Proceedings of the National Academy of Sciences of the United States of America,
U Kelavkar, and S Wang, and A Montero, and J Murtagh, and K Shah, and K Badr
February 2012, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine,
U Kelavkar, and S Wang, and A Montero, and J Murtagh, and K Shah, and K Badr
January 2010, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!