Ultrastructure of the olfactory organ in the clawed frog, Xenopus laevis, during larval development and metamorphosis. 1998

A Hansen, and J O Reiss, and C L Gentry, and G D Burd
Zoological Institute, University of Hamburg, Germany.

Development of the olfactory epithelia of the African clawed frog, Xenopus laevis, was studied by scanning and transmission electron microscopy. Stages examined ranged from hatching through the end of metamorphosis. The larval olfactory organ consists of two chambers, the principal cavity and the vomeronasal organ (VNO). A third sensory chamber, the middle cavity, arises during metamorphosis. In larvae, the principal cavity is exposed to water-borne odorants, but after metamorphosis it is exposed to airborne odorants. The middle cavity and the VNO are always exposed to waterborne odorants. Electron microscopy reveals that in larvae, principal cavity receptor cells are of two types, ciliated and microvillar. Principal cavity supporting cells are also of two types, ciliated and secretory (with small, electron-lucent granules). After metamorphosis, the principal cavity contains only ciliated receptor cells and secretory supporting cells, and the cilia on the receptor cells are longer than in larvae. Supporting cell secretory granules are now large and electron-dense. In contrast, the middle cavity epithelium contains the same cell types seen in the larval principal cavity. The VNO has microvillar receptor cells and ciliated supporting cells throughout life. The cellular process by which the principal cavity epithelium changes during metamorphosis is not entirely clear. Morphological evidence from this study suggests that both microvillar and ciliated receptor cells die, to be replaced by newly generated cells. In addition, ciliated supporting cells also appear to die, whereas there is evidence that secretory supporting cells transdifferentiate into the adult type. In summary, significant developmental additions and neural plasticity are involved in remodeling the olfactory epithelium in Xenopus at metamorphosis.

UI MeSH Term Description Entries
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008297 Male Males
D008675 Metamorphosis, Biological Profound physical changes during maturation of living organisms from the immature forms to the adult forms, such as from TADPOLES to frogs; caterpillars to BUTTERFLIES. Biological Metamorphosis,Biological Metamorphoses,Metamorphoses, Biological
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009831 Olfactory Mucosa That portion of the nasal mucosa containing the sensory nerve endings for SMELL, located at the dome of each NASAL CAVITY. The yellow-brownish olfactory epithelium consists of OLFACTORY RECEPTOR NEURONS; brush cells; STEM CELLS; and the associated olfactory glands. Olfactory Epithelium,Olfactory Membrane,Epithelium, Olfactory,Membrane, Olfactory,Membranes, Olfactory,Mucosa, Olfactory,Olfactory Membranes
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

A Hansen, and J O Reiss, and C L Gentry, and G D Burd
September 1999, Cell and tissue research,
A Hansen, and J O Reiss, and C L Gentry, and G D Burd
April 2016, The Journal of comparative neurology,
A Hansen, and J O Reiss, and C L Gentry, and G D Burd
February 1991, The Journal of comparative neurology,
A Hansen, and J O Reiss, and C L Gentry, and G D Burd
January 1992, The Journal of comparative neurology,
A Hansen, and J O Reiss, and C L Gentry, and G D Burd
December 1991, The Journal of comparative neurology,
A Hansen, and J O Reiss, and C L Gentry, and G D Burd
January 1991, Journal of experimental animal science,
A Hansen, and J O Reiss, and C L Gentry, and G D Burd
November 1996, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
A Hansen, and J O Reiss, and C L Gentry, and G D Burd
January 1998, Sub-cellular biochemistry,
A Hansen, and J O Reiss, and C L Gentry, and G D Burd
January 1996, Brain, behavior and evolution,
A Hansen, and J O Reiss, and C L Gentry, and G D Burd
November 1992, Brain research. Developmental brain research,
Copied contents to your clipboard!