Cloning of the groE operon of the marine bacterium Vibrio harveyi using a lambda vector. 1998

D Kuchanny, and G Klein, and J Krzewska, and A Czyz, and B Lipińska
Department of Biochemistry, University of Gdańsk, Poland.

groES and groEL genes encode two co-operating proteins GroES and GroEL, belonging to a class of chaperone proteins highly conserved during evolution. The GroE chaperones are indispensable for the growth of bacteriophage lambda in Escherichia coli cells. In order to clone the groEL and groES genes of the marine bacterium Vibrio harveyi, we constructed the V. harveyi genomic library in the lambdaEMBL1 vector, and selected clones which were able to complement mutations in both groE genes of E. coli for bacteriophage lambda growth. Using Southern hybridization, in one of these clones we identified a DNA fragment homologous to the E. coli groE region. Analysis of the nucleotide sequence of this fragment showed that the cloned region contained a sequence in 71.7% homologous to the 3' end of the groEL gene of E. coli. This confirmed that the lambda clone indeed carries the groE region of V. harveyi. The positive result of our strategy of cloning with the use of the genomic library in lambda vector suggests that the same method might be useful in the isolation of the groE homologues from other bacteria. The V. harveyi cloned groE genes did not suppress thermosensitivity of the E. coli groE mutants.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D014733 Vibrio A genus of VIBRIONACEAE, made up of short, slightly curved, motile, gram-negative rods. Various species produce cholera and other gastrointestinal disorders as well as abortion in sheep and cattle. Beneckea
D016680 Genome, Bacterial The genetic complement of a BACTERIA as represented in its DNA. Bacterial Genome,Bacterial Genomes,Genomes, Bacterial
D018834 Chaperonin 60 A group I chaperonin protein that forms the barrel-like structure of the chaperonin complex. It is an oligomeric protein with a distinctive structure of fourteen subunits, arranged in two rings of seven subunits each. The protein was originally studied in BACTERIA where it is commonly referred to as GroEL protein. Heat-Shock Proteins 60,hsp60 Family,GroEL Protein,GroEL Stress Protein,Heat-Shock Protein 60,hsp60 Protein,Heat Shock Protein 60,Heat Shock Proteins 60

Related Publications

D Kuchanny, and G Klein, and J Krzewska, and A Czyz, and B Lipińska
June 2003, Microbiology (Reading, England),
D Kuchanny, and G Klein, and J Krzewska, and A Czyz, and B Lipińska
August 1998, Molecular & general genetics : MGG,
D Kuchanny, and G Klein, and J Krzewska, and A Czyz, and B Lipińska
June 1981, Journal of bacteriology,
D Kuchanny, and G Klein, and J Krzewska, and A Czyz, and B Lipińska
February 1983, Journal of bacteriology,
D Kuchanny, and G Klein, and J Krzewska, and A Czyz, and B Lipińska
May 1995, Molecular microbiology,
D Kuchanny, and G Klein, and J Krzewska, and A Czyz, and B Lipińska
December 2019, Genomics,
D Kuchanny, and G Klein, and J Krzewska, and A Czyz, and B Lipińska
January 2013, PloS one,
D Kuchanny, and G Klein, and J Krzewska, and A Czyz, and B Lipińska
March 1997, Ecotoxicology and environmental safety,
D Kuchanny, and G Klein, and J Krzewska, and A Czyz, and B Lipińska
November 1984, Journal of bacteriology,
D Kuchanny, and G Klein, and J Krzewska, and A Czyz, and B Lipińska
January 2015, Genome announcements,
Copied contents to your clipboard!