Expanding the role of HsEg5 within the mitotic and post-mitotic phases of the cell cycle. 1998

C M Whitehead, and J B Rattner
Department of Medical Biochemistry, University of Calgary, Calgary, Alberta, Canada.

The BimC family of kinesin like proteins are involved in spindle dynamics in a wide variety of organisms. The human member of this family, HsEg5, has been implicated in centrosome separation during prophase/prometaphase and in the organization of in vitro mitotic asters. HsEg5 displays a complex distribution during mitosis, associating with the centrosomes, spindle microtubules, specific regions of the intracellular bridge and a microtubule bundle that forms in association with the post-mitotic migration of the centrosome. In an effort to determine the function of HsEg5 during late mitotic events and refine its proposed function during early mitotic centrosome separation, we microinjected antibodies specific to HsEg5 into HeLa cells during various stages of mitosis. In the presence of HsEg5 antibodies we find that the microtubule arrays responsible for both pre- and post-mitotic centrosome movement never form. Similarly, the microtubule bundle within the intracellular bridge becomes prematurely altered following karyokinesis resulting in the loss of the microtubule array at either end of the bridge. In addition, some peri-centrosomal material at the spindle poles becomes fragmented and the distribution of the spindle protein NuMA becomes more concentrated at the minus ends of the spindle microtubules. Our study also provides direct evidence that there is a link between post-mitotic centrosome migration and Golgi complex positioning and reformation following mitosis. We conclude that HsEg5 plays a recurrent role in establishing and/or determining the stability of specific microtubule arrays that form during cell division and that this role may encompass the ability of HsEg5 to influence the distribution of other protein components associated with cell division

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D008677 Metaphase The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D008941 Spindle Apparatus A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules. Mitotic Apparatus,Mitotic Spindle Apparatus,Spindle Apparatus, Mitotic,Meiotic Spindle,Meiotic Spindle Apparatus,Mitotic Spindle,Apparatus, Meiotic Spindle,Apparatus, Mitotic,Apparatus, Mitotic Spindle,Apparatus, Spindle,Meiotic Spindles,Mitotic Spindles,Spindle Apparatus, Meiotic,Spindle, Meiotic,Spindle, Mitotic,Spindles, Meiotic,Spindles, Mitotic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D005260 Female Females

Related Publications

C M Whitehead, and J B Rattner
December 2013, Current opinion in cell biology,
C M Whitehead, and J B Rattner
May 1998, Science (New York, N.Y.),
C M Whitehead, and J B Rattner
March 2024, Differentiation; research in biological diversity,
C M Whitehead, and J B Rattner
February 2024, bioRxiv : the preprint server for biology,
C M Whitehead, and J B Rattner
January 1972, Radiobiologiia,
C M Whitehead, and J B Rattner
May 2010, Proceedings of the National Academy of Sciences of the United States of America,
C M Whitehead, and J B Rattner
March 1979, Journal of steroid biochemistry,
C M Whitehead, and J B Rattner
April 1973, Tsitologiia,
C M Whitehead, and J B Rattner
July 2008, Journal of clinical immunology,
C M Whitehead, and J B Rattner
March 1984, Revista espanola de fisiologia,
Copied contents to your clipboard!