Molecular and functional analysis of the lipopolysaccharide biosynthesis locus wlb from Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. 1998

A G Allen, and R M Thomas, and J T Cadisch, and D J Maskell
Department of Clinical Veterinary Medicine, University of Cambridge, UK. aga20@cam.ac.uk

The Bordetella pertussis wlb locus (wlbpe, formerly bpl) is required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS. The equivalent loci in Bordetella bronchiseptica (wlbbr) and Bordetella parapertussis (wlbpa) were identified and cloned. The wlbbr and wlbpa loci differ from wlbpe in that they lack the insertion sequence that defines the right-hand terminus of wlbpe. Deletion of 12 kb of DNA containing the whole wlb locus (delta wlb) by allelic exchange in each of the three bordetellae had no effect on band B biosynthesis, whereas band A biosynthesis was prevented in B. pertussis and B. bronchiseptica. In B. bronchiseptica and B. parapertussis, delta wlb mutants also lacked O-antigen. Reintroduction of the wlbpe or wlbbr loci on a shuttle vector into the three delta wlb mutants restored the wild-type LPS phenotype in the B. pertussis and B. bronchiseptica mutants. In the case of B. parapertussis, which normally does not synthesize an apparent band A structure, introduction of the wlbpe or wlbbr loci now enabled the generation of band A. This suggests that the attachment point for band A trisaccharide on the LPS core is present in B. parapertussis, and further suggests that the wild-type wlbpa locus is not fully functional. Introduction of the wlbpa locus into the delta wlbpe, delta wlbbr and delta wlbpa mutants had interesting consequences. The B. bronchiseptica and B. parapertussis recipients were now able to biosynthesize O-antigen, but no band A was generated. In the B. pertussis recipient, a truncated band A was expressed consistent with a mutation in the wlbH gene, but on Western blotting the expression of a small amount of full-length band A was also seen. Evidence that the wlbHpa protein is not fully functional was provided by the failure of the wlbpa locus to fully complement a B. pertussis wlbH (delta wlbHpe) mutant. This was supported by DNA sequence data showing that a single amino acid, conserved between homologous proteins from a range of bacteria, is altered in the B. parapertussis WlbH protein.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D001884 Bordetella A genus of gram-negative aerobic bacteria whose cells are minute coccobacilli. It consists of both parasitic and pathogenic species.
D001886 Bordetella pertussis A species of gram-negative, aerobic bacteria that is the causative agent of WHOOPING COUGH. Its cells are minute coccobacilli that are surrounded by a slime sheath. Bacterium tussis-convulsivae,Haemophilus pertussis,Hemophilus pertussis
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

A G Allen, and R M Thomas, and J T Cadisch, and D J Maskell
September 2002, Microbial pathogenesis,
A G Allen, and R M Thomas, and J T Cadisch, and D J Maskell
January 2002, TheScientificWorldJournal,
A G Allen, and R M Thomas, and J T Cadisch, and D J Maskell
September 2003, Nature genetics,
A G Allen, and R M Thomas, and J T Cadisch, and D J Maskell
March 1991, Journal of medical microbiology,
A G Allen, and R M Thomas, and J T Cadisch, and D J Maskell
September 1966, Archiv fur Hygiene und Bakteriologie,
A G Allen, and R M Thomas, and J T Cadisch, and D J Maskell
January 2006, Medycyna doswiadczalna i mikrobiologia,
A G Allen, and R M Thomas, and J T Cadisch, and D J Maskell
June 1987, Journal of bacteriology,
A G Allen, and R M Thomas, and J T Cadisch, and D J Maskell
August 2000, Infection and immunity,
Copied contents to your clipboard!