[The signal transduction of receptor tyrosine kinase]. 1998

T Takada, and T Matozaki, and M Kasuga
Second Department of Internal Medicine, Kobe University School of Medicine.

Polypeptides such as growth factors, differentiation factors, and hormones are crucial components of the regulatory system that coordinates development of multicellular organisms. Many of these factors mediate their pleiotropic actions by binding to and activating cell surface receptors with an intrinsic protein tyrosine kinase activity. The receptor activation due to ligands binding are translated across the membrane barrier into activation of intracellular domain functions. All receptor tyrosine kinase are composed of three major domains; an extracellular domain connected via a single membrane-spanning domain to a cytoplasmic domain. The extracellular domain is responsible for ligand binding and transmission of the biological signal to the cytoplasmic domain, whose role is to transmit the biological signal to intracellular target proteins. The cytoplasmic domain contains, in addition to the catalytic protein tyrosine kinase, distinct regulatory sequences with tyrosine, serine, and threonine phosphorylation sites. It appears that ligand-induced activation of the kinase domain and its signaling potential are mediated by receptor oligomerization. Ligand binding and the subsequent conformational alteration of the extracellular domain induce receptor oligomerization, which stabilizes interaction between adjacent cytoplasmic domains and leads to activation of kinase function and autophosphorylation of themselves. These receptor and substrate phosphorylation create binding sites for SH2 containing signaling molecule, such as Grb2, Shc, PI3 kinase and SHP-2. Binding of SH2 domains to tyrosine-phosphorylated regions of receptors or adaptor proteins, and a number of protein, such as SH3 containing protein, cytosol protein tyrosine kinase, protein tyrosine phosphatase and serine/threonine kinase, mediate intracellular signaling cascade and play critical roles in activated receptor protein tyrosine kinase to downstream signaling pathways.

UI MeSH Term Description Entries
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017871 Calcium-Calmodulin-Dependent Protein Kinases A CALMODULIN-dependent enzyme that catalyzes the phosphorylation of proteins. This enzyme is also sometimes dependent on CALCIUM. A wide range of proteins can act as acceptor, including VIMENTIN; SYNAPSINS; GLYCOGEN SYNTHASE; MYOSIN LIGHT CHAINS; and the MICROTUBULE-ASSOCIATED PROTEINS. (From Enzyme Nomenclature, 1992, p277) Ca(2+)-Calmodulin-Dependent Protein Kinase,Calcium-Calmodulin-Dependent Protein Kinase,Calmodulin-Dependent Protein Kinase,Calmodulin-Dependent Protein Kinases,Multifunctional Calcium-Calmodulin-Dependent Protein Kinase,Restricted Calcium-Calmodulin-Dependent Protein Kinase,Calcium-Calmodulin-Dependent Protein Kinases, Multifunctional,Calcium-Calmodulin-Dependent Protein Kinases, Restricted,Calmodulin-Dependent Multiprotein Kinase,Calmodulin-Kinase,Cam-MPK,Multifunctional Calcium-Calmodulin-Dependent Protein Kinases,Restricted Calcium-Calmodulin-Dependent Protein Kinases,Calcium Calmodulin Dependent Protein Kinase,Calcium Calmodulin Dependent Protein Kinases, Multifunctional,Calcium Calmodulin Dependent Protein Kinases, Restricted,Calmodulin Dependent Multiprotein Kinase,Calmodulin Dependent Protein Kinase,Calmodulin Dependent Protein Kinases,Calmodulin Kinase,Cam MPK,Kinase, Calcium-Calmodulin-Dependent Protein,Kinase, Calmodulin-Dependent Protein,Multifunctional Calcium Calmodulin Dependent Protein Kinase,Multifunctional Calcium Calmodulin Dependent Protein Kinases,Multiprotein Kinase, Calmodulin-Dependent,Protein Kinase, Calcium-Calmodulin-Dependent,Protein Kinase, Calmodulin-Dependent,Protein Kinases, Calcium-Calmodulin-Dependent,Protein Kinases, Calmodulin-Dependent,Restricted Calcium Calmodulin Dependent Protein Kinase,Restricted Calcium Calmodulin Dependent Protein Kinases
D018909 src Homology Domains Regions of AMINO ACID SEQUENCE similarity in the SRC-FAMILY TYROSINE KINASES that fold into specific functional tertiary structures. The SH1 domain is a CATALYTIC DOMAIN. SH2 and SH3 domains are protein interaction domains. SH2 usually binds PHOSPHOTYROSINE-containing proteins and SH3 interacts with CYTOSKELETAL PROTEINS. SH Domains,SH1 Domain,SH2 Domain,SH3 Domain,src Homology Region 2 Domain,Homology Domain, src,Homology Domains, src,SH Domain,SH1 Domains,SH2 Domains,SH3 Domains,src Homology Domain
D019869 Phosphatidylinositol 3-Kinases Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell. PI-3 Kinase,Phosphatidylinositol-3-OH Kinase,PtdIns 3-Kinase,PI 3-Kinase,PI-3K,PI3 Kinases,PI3-Kinase,Phosphoinositide 3 Kinases,Phosphoinositide 3-Hydroxykinase,PtdIns 3-Kinases,3-Hydroxykinase, Phosphoinositide,Kinase, PI-3,Kinase, Phosphatidylinositol-3-OH,Kinases, PI3,Kinases, Phosphoinositide 3,PI 3 Kinase,PI3 Kinase,Phosphatidylinositol 3 Kinases,Phosphatidylinositol 3 OH Kinase,Phosphoinositide 3 Hydroxykinase,PtdIns 3 Kinase,PtdIns 3 Kinases
D020794 Receptor Protein-Tyrosine Kinases A class of cellular receptors that have an intrinsic PROTEIN-TYROSINE KINASE activity. PTK Receptor,Receptors, Protein-Tyrosine Kinase,Tyrosine Kinase Linked Receptor,Tyrosine Kinase Linked Receptors,Tyrosine Kinase Receptor,Tyrosine Kinase Receptors,PTK Receptors,Protein-Tyrosine Kinase Receptor,Receptor Protein-Tyrosine Kinase,Kinase Receptor, Tyrosine,Kinase, Receptor Protein-Tyrosine,Kinases, Receptor Protein-Tyrosine,Protein-Tyrosine Kinase Receptors,Protein-Tyrosine Kinase, Receptor,Protein-Tyrosine Kinases, Receptor,Receptor Protein Tyrosine Kinase,Receptor Protein Tyrosine Kinases,Receptor, PTK,Receptor, Protein-Tyrosine Kinase,Receptor, Tyrosine Kinase,Receptors, PTK,Receptors, Protein Tyrosine Kinase

Related Publications

T Takada, and T Matozaki, and M Kasuga
January 1998, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer,
T Takada, and T Matozaki, and M Kasuga
December 1995, Bioscience reports,
T Takada, and T Matozaki, and M Kasuga
December 2003, Antioxidants & redox signaling,
T Takada, and T Matozaki, and M Kasuga
January 1996, Acta haematologica,
T Takada, and T Matozaki, and M Kasuga
June 2021, Communications biology,
T Takada, and T Matozaki, and M Kasuga
March 2002, Yao xue xue bao = Acta pharmaceutica Sinica,
T Takada, and T Matozaki, and M Kasuga
September 2003, Trends in biochemical sciences,
T Takada, and T Matozaki, and M Kasuga
July 2000, Regulatory peptides,
T Takada, and T Matozaki, and M Kasuga
November 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
T Takada, and T Matozaki, and M Kasuga
January 1992, Cold Spring Harbor symposia on quantitative biology,
Copied contents to your clipboard!