Dependence of apparent diffusion coefficients on axonal spacing, membrane permeability, and diffusion time in spinal cord white matter. 1998

J C Ford, and D B Hackney, and E Lavi, and M Phillips, and U Patel
Department of Radiology, University of Pennsylvania Medical Center, Philadelphia 19104, USA. ford@rad.upenn.edu

We used a numerical simulation of water self-diffusion among permeable cylinders to predict the dependence of MR-based apparent diffusion coefficients in white matter on axonal separation, barrier permeability, and diffusion time (T). The transverse apparent diffusion coefficient (tADC), calculated with simulated diffusion-sensitizing gradients perpendicular to the axon fibers, remains a function of T down to diffusion times as short as .1 microsec for a range of diffusion barrier permeability. As the diffusion time lengthens, the response of tADC depends on axon diameter, with decreases in tADC occurring earliest, and most dramatically, for the smallest fiber diameter simulated (2 microm). For a given axonal separation, asymptotic values of ADC are determined by permeability alone and are the same for 2-microm and 11-microm fibers of equal membrane permeability. The effect of increased relative intracellular volume is manifested primarily in a decrease in tADC at short T. Increases in interaxonal spacing increase the tADC at asymptotically long diffusion times and reduce the dependence on permeability. However, at the widest plausible axonal separations, permeability remains an important determinant of tADC. These simulations may enhance interpretation of measured tADC in the context of the underlying physiologic and structural changes at the cellular level that accompany white-matter disease.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

J C Ford, and D B Hackney, and E Lavi, and M Phillips, and U Patel
January 2005, AJNR. American journal of neuroradiology,
J C Ford, and D B Hackney, and E Lavi, and M Phillips, and U Patel
June 2001, Magnetic resonance in medicine,
J C Ford, and D B Hackney, and E Lavi, and M Phillips, and U Patel
March 2008, Journal of neurology,
J C Ford, and D B Hackney, and E Lavi, and M Phillips, and U Patel
April 2006, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine,
J C Ford, and D B Hackney, and E Lavi, and M Phillips, and U Patel
November 2018, NeuroImage,
J C Ford, and D B Hackney, and E Lavi, and M Phillips, and U Patel
December 2019, NMR in biomedicine,
J C Ford, and D B Hackney, and E Lavi, and M Phillips, and U Patel
December 2003, Journal of the neurological sciences,
J C Ford, and D B Hackney, and E Lavi, and M Phillips, and U Patel
June 2014, Physics in medicine and biology,
J C Ford, and D B Hackney, and E Lavi, and M Phillips, and U Patel
March 2008, Journal of magnetic resonance imaging : JMRI,
Copied contents to your clipboard!